Measurement of $J/\psi$ and $\psi\left(2S\right)$ production in $p+p$ and $p+d$ interactions at 120 GeV

The SeaQuest collaboration Leung, C.H. ; Nagai, K. ; Nakano, K. ; et al.
Phys.Lett.B 858 (2024) 139032, 2024.
Inspire Record 2799214 DOI 10.17182/hepdata.167075

We report the $p+p$ and $p+d$ differential cross sections measured in the SeaQuest experiment for $J/\psi$ and $\psi\left(2S\right)$ production at 120 GeV beam energy covering the forward $x$-Feynman ($x_F$) range of $0.5 < x_F <0.9$. The measured cross sections are in good agreement with theoretical calculations based on the nonrelativistic QCD (NRQCD) using the long-distance matrix elements deduced from a recent global analysis of proton- and pion-induced charmonium production data. The $\sigma_{\psi\left(2S\right)} / \sigma_{J/\psi}$ cross section ratios are found to increase as $x_F$ increases, indicating that the $q \bar{q}$ annihilation process has larger contributions in the $\psi\left(2S\right)$ production than the $J/\psi$ production. The $\sigma_{pd}/2\sigma_{pp}$ cross section ratios are observed to be significantly different for the Drell-Yan process and $J/\psi$ production, reflecting their different production mechanisms. We find that the $\sigma_{pd}/2\sigma_{pp}$ ratios for $J/\psi$ production at the forward $x_F$ region are sensitive to the $\bar{d}/ \bar{u}$ flavor asymmetry of the proton sea, analogous to the Drell-Yan process. The transverse momentum ($p_T$) distributions for $J/\psi$ and $\psi\left(2S\right)$ production are also presented and compared with data collected at higher center-of-mass energies.

12 data tables

The differential cross sections per nucleon, $d\sigma/dx_{F}$ (in nb), for $J/\psi$ production in $p+p$ collision at 120 GeV for different $x_F$ bins.

The differential cross sections per nucleon, $d\sigma/dx_{F}$ (in nb), for $J/\psi$ production in $p+d$ collision at 120 GeV for different $x_F$ bins.

The differential cross sections per nucleon, $d\sigma/dx_{F}$ (in nb), for $\psi(2S)$ production in $p+p$ collision at 120 GeV for different $x_F$ bins.

More…

The Asymmetry of Antimatter in the Proton

The SeaQuest collaboration Dove, J. ; Kerns, B. ; McClellan, R.E. ; et al.
Nature 604 (2022) E26, 2022.
Inspire Record 1849683 DOI 10.17182/hepdata.167351

The fundamental building blocks of the proton, quarks and gluons, have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as for example its spin. The two up and the single down quarks that comprise the proton in the simplest picture account only for a few percent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions where a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, since their masses are quite similar and small compared to the mass of the proton. In the present manuscript, we show evidence from muon pair production measurements that these distributions are significantly different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momentum. These results revive interest in several proposed mechanisms as the origin of this antimatter asymmetry in the proton that had been disfavored by the previous results and point to the future measurements that can distinguish between these mechanisms.

5 data tables

Cross section ratios $\sigma_{D}/2\sigma_{H}$ binned in $x_t$ with their statistical and systematic uncertainties and the average values for the kinematic variables of each $x_t$ bin. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column is the experimental resolution in $x_t$ as determined by Monte Carlo simulations.

Ratios of $\bar{d}(x)$ to $\bar{u}(x)$ with their upper and lower statistical and systematic uncertainties. The analysis was based on the present cross section ratio data, and next-to-leading order calculations of the Drell-Yan cross sections using CT18 parton distributions for all except the ratio of $\bar{d}(x)$ to $\bar{u}(x)$. The systematic uncertainty is fully correlated among all $x$ bins. The systematic uncertainty does not include a contribution from the choice of the base (CT18) pdf, which is small if added in quadrature to the other systematic uncertainties.

Ratios of $\mathbf{\sigma_D}$ to $\mathbf{2\sigma_H}$ as a function of $\mathbf{P_T}$. Ratios of $\sigma_D$ to $2\sigma_H$ with their statistical and systematic uncertainties as a function of transverse momentum, $P_T$. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column, $\delta P_T$ is the experimental resolution in $P_T$ as determined by Monte Carlo simulation.

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

81 data tables

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

More…

Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 92 (2015) 021901, 2015.
Inspire Record 1322965 DOI 10.17182/hepdata.72254

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.

1 data table

$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.


Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

14 data tables

Projections of the correlation function C.

Projections of the correlation function C.

Projections of the correlation function C.

More…

A Precise Measurement of the Muon Neutrino-NucleonInclusive Charged Current Cross-Section off an IsoscalarTarget in the Energy Range\boldmath{$2.5 < E_\nu < 40$}~GeV by NOMAD

The NOMAD collaboration Wu, Q. ; Mishra, Sanjib Ratan ; Godley, A. ; et al.
Phys.Lett.B 660 (2008) 19-25, 2008.
Inspire Record 767013 DOI 10.17182/hepdata.50629

We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range $2.5 \leq E_\nu \leq 40$ GeV. The significance of this measurement is its precision, $\pm 4$% in $2.5 \leq E_\nu \leq 10$ GeV, and $\pm 2.6$% in $10 \leq E_\nu \leq 40$ GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

1 data table

Inclusive muon-neutrino charged current cross section.


A study of strange particle production in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 621 (2002) 3-34, 2002.
Inspire Record 566751 DOI 10.17182/hepdata.48925

A study of strange particle production in muon neutrino charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles K0s, Lambda, AntiLambda have been measured. Mean multiplicities are reported as a function of the event kinematic variables Enu, W2 and Q2 as well as of the variables describing particle behaviour within a hadronic jet: xF, z and pT2. Decays of resonances and heavy hyperons with identified K0s and Lambda in the final state have been analyzed. Clear signals corresponding to K*+-, Sigma*+-, Xi- and Sigma0 have been observed.

20 data tables

Measured yields of the neutral strange particles measured in this analysis.The second line (marked *) is a recalculation taking into account contributions from both primary and secondary V0. The values for K0 are the K0S rates multipl ied by 2.

Measured yields as a function of E, the neutrino energy.

Measured yields as a function of W**2.

More…

Search for new heavy particles in the W Z0 final state in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 88 (2002) 071806, 2002.
Inspire Record 560924 DOI 10.17182/hepdata.42895

We present a search for new heavy particles, $X$, which decay via $X \to WZ \to e\nu +jj$ in $p{\bar p}$ collisions at $\sqrt{s}$ = 1.8 TeV. No evidence is found for production of $X$ in 110 pb$^{-1}$ of data collected by the Collider Detector at Fermilab. Limits are set at the 95% C.L. on the mass and the production of new heavy charged vector bosons which decay via $W'\to WZ$ in extended gauge models as a function of the width, $\Gamma (W')$, and mixing factor between the $W'$ and the Standard Model $W$ bosons.

1 data table

CONST(NAME=XI) is the mixing factor between WPRIME and W-boson.


Search for narrow diphoton resonances and for gamma gamma + w /z signatures in p anti p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 092002, 2001.
Inspire Record 557012 DOI 10.17182/hepdata.42918

We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 $pb^{-1}$ of $p\bar{p}$ collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both $p\bar{p} \to \gamma \gamma + X$ and $p \bar{p} \to \gamma \gamma + W/Z$. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale $\sqrt{F}$ in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for $H \to \gamma \gamma$. Finally, we set a lower limit on the mass of a 'bosophilic' Higgs boson (e.g. one which couples only to $\gamma, W,$ and $Z$ bosons with standard model couplings) of 82 GeV/$c^2$ at 95% confidence level.

2 data tables

No description provided.

No description provided.