We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.
Measured ET differential cross section of the 1st jet in >= 1 JET plus W < E NU > events.
Measured ET differential cross section of the 2nd jet in >= 2 JET plus W < E NU > events.
Measured ET differential cross section of the 3rd jet in >= 3 JET plus W < E NU > events.
We present results from the measurement of the inclusive jet cross section for jet transverse energies from 40 to 465 GeV in the pseudo-rapidity range $0.1<|\eta|<0.7$. The results are based on 87 $pb^{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron Collider. The data are consistent with previously published results. The data are also consistent with QCD predictions given the flexibility allowed from current knowledge of the proton parton distributions. We develop a new procedure for ranking the agreement of the parton distributions with data and find that the data are best described by QCD predictions using the parton distribution functions which have a large gluon contribution at high $E_T$ (CTEQ4HJ).
The inclusive jet cross section. Statistical errors shown. The systematic errors are given in the html link above.
A measurement is presented of the two-jet differential cross section, d^3\sigma/dE_T d\eta_1 d\eta_2, at center of mass energy sqrt{s} = 1800 GeV in proton-antiproton collisions. The results are based on an integrated luminosity of 86 pb^-1 collected during 1994-1995 by the CDF collaboration at the Fermilab Tevatron collider. The differential cross section is measured as a function of the transverse energy, E_T, of a jet in the pseudorapidity region 0.1 < |eta_1| < 0.7 for four different pseudorapidity bins of a second jet restricted to 0.1 < |\eta_2| < 3.0. The results are compared with next-to-leading order QCD calculations determined using the CTEQ4 and MRST sets of parton distribution functions. None of the sets examined in this analysis provides a good description of the data.
The measured dijet differential cross section with the second jet in the ABS(ETARAP) range 0.1 to 0.7.
The measured dijet differential cross section with the second jet in the ABS(ETARAP) range 0.7 to 1.4.
The measured dijet differential cross section with the second jet in the ABS(ETARAP) range 1.4 to 2.1.
Measurements of the global transverse energy distributions dσ / dE T and dE T / dη using the new AGS beam of 197 Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28 Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π . The dσ / dE T spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ / dE T spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 11.6 GeV/nucleon.