Measurement of charged particle multiplicity distributions in DIS at HERA and its implication to entanglement entropy of partons

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baty, A. ; et al.
Eur.Phys.J.C 81 (2021) 212, 2021.
Inspire Record 1827840 DOI 10.17182/hepdata.102570

Charged particle multiplicity distributions in positron-proton deep inelastic scattering at a centre-of-mass energy $\sqrt{s}=319$ GeV are measured. The data are collected with the H1 detector at HERA corresponding to an integrated luminosity of $136$ pb${}^{-1}$. Charged particle multiplicities are measured as a function of photon virtuality $Q^2$, inelasticity $y$ and pseudorapidity $\eta$ in the laboratory and the hadronic centre-of-mass frames. Predictions from different Monte Carlo models are compared to the data. The first and second moments of the multiplicity distributions are determined and the KNO scaling behaviour is investigated. The multiplicity distributions as a function of $Q^2$ and the Bjorken variable $x_{\rm Bj}$ are converted to the hadron entropy $S_{\rm hadron}$, and predictions from a quantum entanglement model are tested.

10 data tables

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in 4x4 kinematic bins of $Q^2$ and $y$.

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in three overlapping pseudorapidity ranges $-1.2<\eta_{lab}\vert<0.2$, $-0.5<\eta_{lab}\vert<0.9$ and $0.2<\eta_{lab}\vert<1.6$, subdivided into 4x4 kinematic bins of $Q^2$ and $y$.

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ with the additional restriction to select only particles from the current region of the Breit frame $0<\eta^{*}<4$, in 4x4 kinematic bins of $Q^2$ and $y$.

More…

Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…