None
THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.
See paper for definition of four weak decay formfactors : wa, wc, wd, we. For TAU+-.
Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).
The production of neutral kaons in e+e− annihilation at centre-of-mass energies in the region of the Z0 mass and their Bose-Einstein correlations are investigated with the OPAL detector at LEP. A total of about 1.26×106 Z0 hadronic decay events are used in the analysis. The production rate of K0 mesons is found to be 1.99±0.01±0.04 per hadronic event, where the first error is statistical and the second systematic. Both the rate and the differential cross section for K0 production are compared to the predictions of Monte Carlo generators. This comparison indicates that the fragmentation is too soft in bothJetset andHerwig. Bose-Einstein correlations in Ks0Ks0 pairs are measured through the quantityQ, the four momentum difference of the pair. A threshold enhancement is observed in Ks0Ks0 pairs originating from a mixed sample of\(K^0 \bar K^0\) and K0K0 (\(\bar K^0 \bar K^0\)) pairs. For the strength of the effect and for the radius of the emitting source we find values of λ=1.14±0.23±0.32 andR0=(0.76±0.10±0.11) fm respectively. The first error is statistical and the second systematic.
No description provided.
The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.
The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.
Measurements have been made in the OPAL experiment at LEP of the inclusive production of strange vector φ(1020) and K*(892)0 mesons, and the tensor meson K2*(1430)0. The overall production rates per hadronic Z0 decay have been determined to be 0.100±0.004stat.±0.007syst. φ(1020) mesons, 0.74±0.03stat.±0.03syst. K*(892)0 mesons and (forxE<0.3) 0.19±0.04stat.±0.06syst. K2*(1430)0 mesons. The measurements for the vector states update previously published results based on lower statistics, while the K2*(1430)0 rate represents the first direct measurement of a strange tensor state in Z0 decay. For the vector states, both the overall production rates and normalised differential cross sections, with respect to the scaled energy variablexE, have been compared to JETSET and HERWIG predictions. The peak positions in the ζ=ln(1/xp) distributions have been measured and compared to measurements of other hadron states.
No description provided.
No description provided.
Extrapolated to full x region.
We have used data from the OPAL detector at LEP to reconstruct D ∗ mesons and secondary vertices in jets. We have studied the hemispheres of the events opposite these jets and obtain values of the hemisphere charged particle multiplicity in Z 0 → u u , d d , s s , Z 0 → c c and Z 0 → b b events of n uds = 10.41 ± 0.06 ± 0.09 ± 0.19 ; n c = 10.76 ± 0.20 ± 0.14 ± 0.19 ; n b = 11.81 ± 0.01 ± 0.12 ± 0.21 where the first errors are statistical, the second systmatic and the third a common scale uncertainty. We find the difference in total charged particle multiplicity between c and b quark events and light (u, d, s) quark events to be δ cl = 0.69 ± 0.51 ± 0.35; δ bl = 2.79 ± 0.12 ± 0.27. These results are compared to the predictions of various models and QCD based calculations.
Second systematic error is a common scale uncertainty.
Difference in the TOTAL charged particle multiplicity.
We present a study of differential two jet ratios in multi-hadronic final states produced by e + e − annihilation in the AMY detector at TRISTAN. The data are compared to the predictions of the next-to-leading logarithm parton-shower (NLL PS) Monte Carlo and the O ( α s 2 ) matrix element QCD models. We determine the strong coupling strength α s (57.3 GeV) = 0.130 ± 0.006.
The data are compared to the predictions of Monte-Carlo.
Using the p-scheme for jet clustering.
Using the E-scheme for jet clustering.
We have studied the production of D*± mesons in a sample of 1.25 million multihadronic decays of the Z0, in which 1969 candidates have been identified. We have determined the total multiplicity of charged D* mesons in multihadronic Z0 decays to be
No description provided.
Multiplicity data uncorrected for decay branching ratios.
No description provided.
With data corresponding to 142 pb −1 accumulated at s = 57.8 GeV by the AMY detector at TRISTAN we measure the cross section of the reactions e + e − → μ + μ − and e + e − → τ + τ − and the symmetry in the angular distributions. For the lowest order cross section we obtain σ μμ = 27.54 ± 0.65 ± 0.95 pb and σ ττ = 28.27 ± 0.87 ± 0.69 pb, and for the forward-backward asymmetry, A μμ = 0.303 ± 0.027 ± 0.008 and A ττ = −0.291 ± 0.040 ± 0.019. These measurements agree with the standard model. Assuming e − μ − τ univrsality we extract the vector and axial coupling constants | gν | = 0.00 ± 0.09 and | g A | = 0.476 ± 0.024. A fit of data to composite models places lower bounds (95% confidence level) on the compositeness scale of 2–4 TeV.
Lowest order cross section and forward-backward asymmetry.
Errors are statistical only.
Lowest order cross section and forward-backward asymmetry.
The inclusive production rates of π±,K± andp\(\bar p\) inZ0 decays have been measured with the OPAL detector at LEP. Using the energy loss measurement in the jet chamber, the momentum range up to the beam energy (45.6 GeV/c) has been covered. Differential cross sections and total particle yields are given. Comparisons of the inclusive momentum spectra and the total rates with predictions of the JETSET and the HERWIG Monte Carlo model are presented. The total single rates are found to be 17.05±0.43 π±, 2.42±0.13K± and 0.92±0.11p\(\bar p\) per hadronic event. Predictions of JETSET for cross sections and total rates agree very well for π±; however, for momenta greater than 4 GeV/c,K± rates are underestimated and\(\bar p\) rates are overestimated. Combined with data of other particle species there is evidence that the peak positions in the ξ=ln(1/xp) distributions show a different mass dependence for mesons and baryons. However, both JETSET and HERWIG Monte Carlo predictions agree with the observed data.
Normalised momentum distribution for charged pion production.
Normalised momentum distribution for charged kaon production.
Normalised momentum distribution for proton / antiproton production.
We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.
Measured 2 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.
Measured 2 jet production rate as a function of R, the jet cone radius, for a fixed value of the minimum jet energy, EPSILON, of 7 GeV.
Measured 3 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.