In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.
Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.
Statistical covariance matrix of the bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$.
Pion form factor $|F_\pi|^2$ measured using the initial state radiation method. The data is corrected concerning vacuum polarization effects.
New accurate results of the neutron-proton spin-dependent total cross section difference $\Delta\sigma_{\mathrm L}(np)$
Unpolarized total cross sections.
Final results for SIG(NAME=CLL).
The energy spectrum and the cross section of photonuclear interactions of 180 GeV muons in iron were measured at the CERN SPS using prototype modules of the ATLAS hadron calorimeter. The differential
Measured differential cross section for fractional photonuclear muon energy loss.
Total photonuclear cross section which gives best agreement of energy loss with theory. See text of paper for details.
We report values of $R = \sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$ for 85 center-of-mass energies between 2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing Electron-Positron Collider.
Measured values of R.
The energy loss spectrum of 180 GeV muons has been measured with the 5.6 m long finely segmented Module 0 of the ATLAS hadron Tile Calorimeter at the CERN SPS. The differential probability
The measured differential probability values DPROB/DNU. The errors are statistical only.
We have studied the diffractive dissociation into di-jets of 500 GeV/c pions scattering coherently from carbon and platinum targets. Extrapolating to asymptotically high energies (where t_{min} approaches 0) we find that when the per-nucleus cross-section for this process is parameterized as $ \sigma = \sigma_0 A^{\alpha} $, $ \alpha $ has values near 1.6, the exact result depending on jet transverse momentum. These values are in agreement with those predicted by theoretical calculations of color-transparency.
Cross sections is fitted to A**POWER.
A study of charm fragmentation into $D_s^{*+}$ and $D_s^+$ in $e^+e^-$ annihilations at $\sqrt{s}$=10.5 GeV is presented. This study using $4.72 \pm 0.05$ fb$^{-1}$ of CLEO II data reports measurements of the cross-sections $\sigma(D_s^{*+})$ and $\sigma(D_s^+)$ in momentum regions above $x=0.44$, where $x$ is the $D_s$ momentum divided by the maximum kinematically allowed $D_s$ momentum. The $D_s$ vector to vector plus pseudoscalar production ratio is measured to be $P_V(x(D_s^+)>0.44)=0.44\pm0.04$
D/S*+ cross sections in regions of X(D/S*+). BR1 = BR(D/S*+ --> D/S+ GAMMA) * BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
D/S+ cross sections in regions of X(D/S+). BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
D/S*+ cross sections in regions of X/D/S+. In effect this is the secondary D/S+ cross section. BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
New results of the neutron-proton spin-dependent total cross section difference$\Delta\sigma_L(np)$at the neutron beam kinetic energies 1.59, 1.79 and 2.20 GeV ar
Final results from the np data.
Values of the cross section difference at I=0 deduced by combining these npdata with pure pp (I=1) data from other experiments.
We have used the CLEO II detector to study the multiplicity of charged particles in the decays of B mesons produced at the $\Upsilon(4S)$ resonance. Using a sample of 1.5 x 10^6 B meson pairs, we find the mean inclusive charged particle multiplicity to be 10.71 +- 0.02 +0.21/-0.15 for the decay of the pair. This corresponds to a mean multiplicity of 5.36 +- 0.01 +0.11/-0.08 for a single B meson. Using the same data sample, we have also extracted the mean multiplicities in semileptonic and nonleptonic decays. We measure a mean of 7.82 +- 0.05 +0.21/-0.19 charged particles per $B\bar{B}$ decay when both mesons decay semileptonically. When neither B meson decays semileptonically, we measure a mean charged particle multiplicity of 11.62 +- 0.04 +0.24/-0.18 per $B\bar{B}$ pair.
Charged track multiplicity (i.e. charged hadron and charged lepton) in B meson decay.
Using a sample of 3.3 million Upsilon(4S) -> BBbar events collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR), we measure the branching fraction for B -> rho l nu, |V_ub|, and the partial rate (Delta Gamma) in three bins of q^2 = (p_B-p_rho)^2. We find B(B^0 -> rho^- l^+ nu)=(2.69 +- 0.41^+0.35_-0.40 +- 0.50) 10^-4, |V_ub|=(3.23 +- 0.24^+0.23_-0.26 +- 0.58) 10^-3, Delta Gamma (0 < q^2 < 7 GeV^2/c^4) =(7.6 +- 3.0 ^+0.9_-1.2 +- 3.0) 10^-2 ns^-1, Delta Gamma (7 < q^2 < 14 GeV^2/c^4) =(4.8 +- 2.9 ^+0.7_-0.8 +- 0.7) 10^-2 ns^-1, and Delta Gamma (14 < q^2 < 21 GeV^2/c^4) = (7.1 +- 2.1^+0.9_-1.1 +- 0.6)10^-2 ns^-1. The quoted errors are statistical, systematic, and theoretical. The method is sensitive primarily to B -> rho l nu decays with leptons in the energy range above 2.3 GeV. Averaging with the previously published CLEO results, we obtain B(B^0 -> rho^- l^+ nu) = (2.57 +- 0.29^+0.33_-0.46 +- 0.41) 10^-4 and |V_{ub}| = (3.25 +- 0.14 ^+0.21_-0.29 +- 0.55) 10^-3.
VCB is the V-CKM (Cabibbo-Kobayashi-Maskawa) mixing matrix element. LEPTON+- stands for E+- or MU+-.