Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.
The dijet mass distribution (NUMBER OF EVENTS).
95 PCT CL upper limit of the cross section x acceptance.
Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.
Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.
Charged particle multiplicity as a function of pseudorapidity.
Charged particle multiplicity as a function of transverse momentum.
Charged hadrons in 0.15 < pt < 4 GeV/c associated with particles of pt^trig > 4 GeV/c are reconstructed in pp and Au+Au collisions at sqrt(s_NN)=200 GeV. The associated multiplicity and pt magnitude sum are found to increase from pp to central Au+Au collisions. The associated pt distributions, while similar in shape on the near side, are significantly softened on the away side in central Au+Au relative to pp and not much harder than that of inclusive hadrons. The results, consistent with jet quenching, suggest that the away-side fragments approach equilibration with the medium traversed.
Dphi correlation functions for 0.15 < pT < 4 GEV/c and 4 < p_T^trig < 6 GEV/c.
Dphi correlation functions for 0.15 < pT < 4 GEV/c and 4 < p_T^trig < 6 GEV/c.
Dphi correlation functions for 2 < pT < 4 GEV/c and 4 < p_T^trig < 6 GEV/c.
We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of <pt> versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.
Transverse mass distributions for $\phi$ meson from Au+Au (circles) and p+p (squares) collisions at 200 GeV. For clarity, some Au+Au distributions for different centralities are scaled by factors. The top 5% data are obtained from the central trigger data set. All other distributions are obtained from the minimum-bias data set. Dashed lines represent the exponential fits to the distributions and the dotted-dashed line is the result of a double-exponential fit to the distribution from p+p collisions. Error bars are statistical errors only. (x500), (x30), etc. in plot refers to the scaling of data for clearer visual results.
Results of $\phi$ meson inverse slope parameter, $<p_T>$, and dN/dy from NSD p+p and Au+Au collisions at RHIC. All values are for |y| < 0.5. Systematic uncertainties: for Au, 11% on both dN/dy and $<p_T>$. For p+p, 15% on dN/dy and 5% on $<p_T>$.
$R_{CP}$ (a): The ratio of central (top 5%) over peripheral (60-80%) ($R_{CP}$) normalized by $<N_{bin}>$. The ratios for the $\Lambda$ and $K_S^0$, shown by dotted-dashed and dashed lines, are taken from [13]; $R_{AA}$ (b) and (c) are the ratios of central Au + Au (top 5%) to p + p and peripheral Au + Au (60-80%) to p + p, respectively. The values of $R_{AA}$ for charged hadrons are shown as open circles [25]. The width of the gray bands represent the uncertainties in the estimation of $<N_{bin}>$ summed in quadrature with the normalization uncertainties of the spectra. Errors on the $\phi$ data points are the statistical plus 15% systematic errors. Overall normalization errors from binary scaling are listed in the header of each column.
New accurate results of the neutron-proton spin-dependent total cross section difference $\Delta\sigma_{\mathrm L}(np)$
Unpolarized total cross sections.
Final results for SIG(NAME=CLL).
We report the first inclusive photon measurements about mid-rapidity (|y|<0.5) from Au+Au collisions at sqrt(s_{NN}) = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta(E)/E = 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (pt) spectra of pi0 mesons about mid-rapidity (|y|<1) via the pi0 -> photon photon decay channel. The fractional contribution of the pi0 -> photon photon decay to the inclusive photon spectrum decreases by 20% +/- 5% between pt = 1.65 GeV/c and pt = 2.4 GeV/c in the most central events, indicating that relative to pi0 -> photon photon decay the contribution of other photon sources is substantially increasing.
Data for the electron-positron invariant mass plots
dE/dx deviant distributions of positive daughters
Data for the number of reconstructed photon conversions as a function of conversion location plots
We present the results of a systematic study of the shape of the pion distribution in coordinate space at freeze-out in Au+Au collisions at RHIC using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the extracted HBT radii vs. emission angle indicate sources elongated perpendicular to the reaction plane. The results indicate that the pressure and expansion time of the collision system are not sufficient to completely quench its initial shape.
Squared HBT radii relative to the reaction plane angle for three centrality classes.
Squared HBT radii relative to the reaction plane angle for four kT (GeV/c) bins, 20-30% centrality events.
Fourier coefficients of azimuthal oscillations of HBT radii vs number of participating nucleons, for three kT (GeV/c) bins. Larger participant numbers correspond to more central collisions.
We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.
$v_1$ of charged particles as a function of pseudorapidity for 10-70% centrality. Non-flow systematic uncertainties are approximately 20%.
$v_2$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.
$v_4$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.