Ξ− interactions in hydrogen and deuterium are studied close to the forward direction using the CERN charged hyperon beam. The inclusive production of ∑*−(1385),Ξ−,Ξ*0(1530),Ξ*−(1700),Ξ*−(1830), and Ω− is observed, as well as an enhancement in theΞ−π+ channel at 1940 MeV/c2. The momentum distributions and the production cross sections are measured for ∑*−(1385),Ξ−,Ξ*0(1530), and Ω−.
No description provided.
No description provided.
No description provided.
The total cross section for pion production in the reaction pd→pdπ0 has been measured for bombarding energies from Tp=208.4 MeV to 294.6 MeV. This corresponds to maximum pion momenta η=pπ,c.m./mπc between 0.099 and 0.96. The experiment was performed using an electron-cooled proton beam and an internal deuterium gas jet target. The resulting σtot changes by almost four orders of magnitude over the covered energy range. The results are compared to a model which assumes quasi-free production via the pn→dπ0 elementary process.
Geometry 1.
Geometry 2.
No description provided.
The Σ − p and Σ − d total cross sections have been measured to a statistical accuracy of ±1% and ±0.5%, respectively, at five momenta from 74.5 to 136.9 GeV/ c , using the hyperon beam at the CERN SPS. The Ξ − p and Ξ − d total cross sections have also been measured to the same statistical accuracy at 101.5 and 133.8 GeV/ c . The systematic uncertainty at each momentum is estimated to be of the order of ±0.5%. The hyperon-nucleon cross sections are shown to be rising with energy, and the data are compared with various phenomenological models.
Axis error includes +- 0.10/0.10 contribution (FOR DEUT TARGET. ADDED TO STAT. ERROR IN QUADRATURESAME AS ABOVE). Axis error includes +- 0.15/0.15 contribution (FOR PROTON TARGET. ADDED TO STAT. ERROR IN QUADRATURE.UNCERTAINTY OF EXTRAPOLATION OVER T).
No description provided.
We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.
TTBAR production cross section from the combined electron+jet and muon+jet channels.
The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).
130 GeV is sqrt(S) per nucleon-nucleon collision. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.
The neutron-proton bremsstrahlung process $(np \to np\gamma)$ is known to be sensitive to meson exchange currents in the nucleon-nucleon interaction. The triply differential cross section for this reaction has been measured for the first time at the Los Alamos Neutron Science Center, using an intense, pulsed beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered neutrons were observed at six angles between 12$^\circ$ and 32$^\circ$, and the recoil protons were observed in coincidence at 12$^\circ$, 20$^\circ$, and 28$^\circ$ on the opposite side of the beam. Measurement of the neutron and proton energies at known angles allows full kinematic reconstruction of each event. The data are compared with predictions of two theoretical calculations, based on relativistic soft-photon and non-relativistic potential models.
Photon angular distribution in N P bremsstrahlung for scattered proton angle 12 degrees and scattered neutron angle 12 degrees.
Photon angular distribution in N P bremsstrahlung for scattered proton angle 12 degrees and scattered neutron angle 32 degrees.
Photon angular distribution in N P bremsstrahlung for scattered proton angle 20 degrees and scattered neutron angle 20 degrees.
The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.
Axis error includes +- 0.0/0.0 contribution (?////).
Using 116.1 fb^-1 of data collected by the BABAR detector, we present an analysis of Xic0 production in B decays and from the ccbar continuum, with the Xic0 decaying into Omega- K+ and Xi- pi+ final states. We measure the ratio of branching fractions B(Xic0 -> Omega- K+)/B(Xic0 -> Xi- pi+) to be 0.294 +- 0.018 +- 0.016, where the first uncertainty is statistical and the second is systematic. The Xic0 momentum spectrum is measured on and 40 MeV below the Upsilon(4S) resonance. From these spectra the branching fraction product B(B -> Xic0 X) x B(Xic0 -> Xi- pi+) is measured to be (2.11 +- 0.19 +- 0.25) x 10^-4 and the cross-section product sigma(e+ e- -> Xic0 X) x B(Xic0 -> Xi- pi+) from the continuum is measured to be (388 +- 39 +- 41) fb at a center-of-mass energy of 10.58 GeV.
Measured cross section on the UPSILON(4S) resonance for the inclusive producton of XI/C0 times its branching ratio to XI- PI+.
Measured cross section on and off the UPSILON(4S) resonance for the inclusive producton of XI/C0 times its branching ratio to XI- PI+. with the off-resonacne data are scaled to a centre-of-mass energy of 10.580 GeV.
Total measured cross section for XI/C0 production for the continuum data scaled to a centre-of-mass energy of 10.580 GeV.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
A narrow state has been observed in the reaction Σ − + Be → ( Λ K − π + π + ) + X in an experiment at the CERN SPS hyperon beam. At 2.46 GeV/ c 2 the effective ( Λ K − π + π + ) mass distribution shows an excess of 82 events above a background estimated to be 147, corresponding to a statistical significance of more than 6 standard deviations. The positive charge of the observed final state, which has strangeness −2, suggests the interpretation as a Cabibbo favoured decay of the charmed strange baryon, A + [quark content (csu)]. The cross section times branching ratio is measured to be σ · B = (5.3 ± 2.0) μ b/ (Be nucleus) for x > 0.6. The invariant production cross section is described by E d 3 σ /d p 3 ∞ (1 - x ) (1.7±0.7) exp[−(1.1 −0.4 +0.7 ) p T 2 ].
No description provided.