We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.
(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.
(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.
(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to different models [36–38], described in the text. The 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.
We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.
$p_{\rm T}$ dependence of directed flow in centrality 10-20%.
$p_{\rm T}$ dependence of directed flow in centrality 20-30%.
$p_{\rm T}$ dependence of directed flow in centrality 30-40%.
We report the direct virtual photon invariant yields in the transverse momentum ranges $1\!<\!p_{T}\!<\!3$ GeV/$c$ and $5\!<\!p_T\!<\!10$ GeV/$c$ at mid-rapidity derived from the dielectron invariant mass continuum region $0.10<M_{ee}<0.28$ GeV/$c^{2}$ for 0-80\% minimum-bias Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. A clear excess in the invariant yield compared to the number-of-binary-collisions ($N_{bin}$) scaled $p+p$ reference is observed in the $p_T$ range $1\!<\!p_{T}\!<\!3$ GeV/$c$. For $p_T\!>6$ GeV/$c$ the production follows $N_{bin}$ scaling. Model calculations with contributions from thermal radiation and initial hard parton scattering are consistent within uncertainties with the direct virtual photon invariant yield.
Dielectron invariant mass spectra in 1.0-1.5 GeV/c.
Dielectron invariant mass spectra in 1.5-2.0 GeV/c.
Dielectron invariant mass spectra in 2.0-2.5 GeV/c.