Differential measurements of jet substructure and partonic energy loss in Au+Au collisions at $\sqrt {S_{NN}}$ =200 GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 105 (2022) 044906, 2022.
Inspire Record 1925052 DOI 10.17182/hepdata.113875

The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn $= 200$ GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg. We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance ($A_{\rm{J}}$) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range $0.1 < $\tsj $ < 0.3$, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.

54 data tables

$z_{g}$ for HardCore Trigger jets in AuAu Data anti-kT R$=$0.4

$z_{g}$ for HardCore Trigger jets in pp$+$AuAu Data anti-kT R$=$0.4

$z_{g}$ for Matched Trigger jets in AuAu Data anti-kT R$=$0.4

More…

Probing the gluonic structure of the deuteron with $J/\psi$ photoproduction in d+Au ultra-peripheral collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 122303, 2022.
Inspire Record 1922652 DOI 10.17182/hepdata.113508

Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of $J/\psi$ photoproduction off the deuteron in UPCs at the center-of-mass energy $\sqrt{s_{_{\rm NN}}}=200~\rm GeV$ in d$+$Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.

1 data table

Upper - differential cross section as a function of $p^{2}_{T, J/\psi}$ of \jpsi photoproduction in UPCs at $\sqrt{s_{_{\rm NN}}}=200\rm~GeV$. Data for the total diffractive process are shown with solid markers, while data with neutron tagging in the deuteron-going ZDC are shown with open markers. Theoretical predictions based on the saturation model (Color Glass Condensate)[Phys.Rev.C 101 (2020) 1, 015203] and the gluon shadowing model (LTA) [V. Guzey, M. Strikman, E. Kryshen, M. Zhalov] are compared with data, shown as solid lines. Statistical uncertainty is represented by the error bars, and the systematic uncertainty is denoted by the shaded box. For the lower, ratios of total data and models are presented as a function of $-t \approx p^{2}_{T, J/\psi}$. Color bands are statistical uncertainty based on the data only, while systematic uncertainty is indicated by the gray box.


Kinematic dependence of azimuthal anisotropies in $p$ $+$ Au, $d$ $+$ Au, $^3$He $+$ Au at $\sqrt{s_{_{NN}}}$ = 200 GeV 

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 024901, 2022.
Inspire Record 2026169 DOI 10.17182/hepdata.132366

There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of data at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.

59 data tables

$v_2$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination

$v_2$ vs $p_T$, d+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination

$v_2$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination

More…

Azimuthal correlations in photoproduction and deep inelastic $\boldsymbol{ep}$ scattering at HERA

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
JHEP 12 (2021) 102, 2021.
Inspire Record 1869927 DOI 10.17182/hepdata.110989

Collective behaviour of final-state hadrons, and multiparton interactions are studied in high-multiplicity $ep$ scattering at a centre-of-mass energy $\sqrt{s}=318$ GeV with the ZEUS detector at HERA. Two- and four-particle azimuthal correlations, as well as multiplicity, transverse momentum, and pseudorapidity distributions for charged-particle multiplicities $N_{\textrm ch} \geq 20$ are measured. The dependence of two-particle correlations on the virtuality of the exchanged photon shows a clear transition from photoproduction to neutral current deep inelastic scattering. For the multiplicities studied, neither the measurements in photoproduction processes nor those in neutral current deep inelastic scattering indicate significant collective behaviour of the kind observed in high-multiplicity hadronic collisions at RHIC and the LHC. Comparisons of PYTHIA predictions with the measurements in photoproduction strongly indicate the presence of multiparton interactions from hadronic fluctuations of the exchanged photon.

17 data tables

Two-particle correlations $c_{1}\{2\}$ versus $Q^2$. Photoproduction data are shown at $Q^2$ = 0 GeV$^2$, while NC DIS is for $Q^2$ > 5 GeV$^2$.

Two-particle correlations $c_{1}\{2\}$ versus $Q^2$ with a rapidity separation: $\Delta \eta > 2$. Photoproduction data are shown at $Q^2$ = 0 GeV$^2$, while NC DIS is for $Q^2$ > 5 GeV$^2$.

Two-particle correlations $c_{1}\{2\}$ versus $Q^2$ with a high-$p_{\textrm{T}}$ constraint: $p_{\textrm{T}}$ > 0.5 GeV. Photoproduction data are shown at $Q^2$ = 0 GeV$^2$, while NC DIS is for $Q^2$ > 5 GeV$^2$.

More…

Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 128 (2022) 092301, 2022.
Inspire Record 1869023 DOI 10.17182/hepdata.127969

The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.

16 data tables

The centrality dependencies of the $v_{2}\{\psi_\mathrm{TPC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

The centrality dependencies of the $v_{2}\{\psi_\mathrm{ZDC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

The centrality dependencies of the $\Delta\gamma\{\psi_\mathrm{TPC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

More…

Probing gluon spin-momentum correlations in transversely polarized protons through midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.Lett. 127 (2021) 162001, 2021.
Inspire Record 1848987 DOI 10.17182/hepdata.131760

Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Because direct photons in particular are produced from the hard scattering and do not interact via the strong force, this measurement is a clean probe of initial-state spin-momentum correlations inside the proton and is in particular sensitive to gluon interference effects within the proton. This is the first time direct photons have been used as a probe of spin-momentum correlations at RHIC. The uncertainties on the results are a fifty-fold improvement with respect to those of the one prior measurement for the same observable, from the Fermilab E704 experiment. These results constrain gluon spin-momentum correlations in transversely polarized protons.

2 data tables

The direct photon background fraction from Figure 1. This is the estimated fraction of photons in the isolated direct photon sample that came from either $\pi^0 \rightarrow \gamma \gamma$ or $\eta \rightarrow \gamma \gamma$ decays but the second decay photon is not measured and so these background photons are not eliminated by the tagging cut. These fractions are calculated for the PHENIX EMCal during the 2015 $p$+$p$ run

The transverse single-spin asymmetry of isolated direct photons for $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions with $\sqrt{s} = 200$ GeV. This data appears in both Figure 2 and Table I. An additional scale uncertainty of 3.4% due to the polarization uncertainty is not included.


Observation of $D_{s}^{\pm}/D^0$ enhancement in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.Lett. 127 (2021) 092301, 2021.
Inspire Record 1843268 DOI 10.17182/hepdata.101172

We report on the first measurement of charm-strange meson $D_s^{\pm}$ production at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV from the STAR experiment. The yield ratio between strange ($D_{s}^{\pm}$) and non-strange ($D^{0}$) open-charm mesons is presented and compared to model calculations. A significant enhancement, relative to a PYTHIA simulation of $p$+$p$ collisions, is observed in the $D_{s}^{\pm}/D^0$ yield ratio in Au+Au collisions over a large range of collision centralities. Model calculations incorporating abundant strange-quark production in the quark-gluon plasma (QGP) and coalescence hadronization qualitatively reproduce the data. The transverse-momentum integrated yield ratio of $D_{s}^{\pm}/D^0$ at midrapidity is consistent with a prediction from a statistical hadronization model with the parameters constrained by the yields of light and strange hadrons measured at the same collision energy. These results suggest that the coalescence of charm quarks with strange quarks in the QGP plays an important role in $D_{s}^{\pm}$ meson production in heavy-ion collisions.

10 data tables

The $KK\pi$ invariant mass distribution (Counts per 8 MeV/$c^{2}$ bin) for right-sign combinations in 0-80% Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV.

$D_s^{\pm}$ invariant yield as a function of $p_{T}$ in 0-10% centrality bin of Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV. The $p_T$ bins are 1.5 < $p_T$ < 2.5 GeV/c, 2.5 < $p_T$ < 3.5 GeV/c, 3.5 < $p_T$ < 5.0 GeV/c and 5.0 < $p_T$ < 8.0 GeV/c.

$D_s^{\pm}$ invariant yield as a function of $p_{T}$ in 10-40% centrality bin of Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV. The $p_T$ bins are 1.0 < $p_T$ < 2.0 GeV/c, 2.0 < $p_T$ < 2.5 GeV/c, 2.5 < $p_T$ < 3.5 GeV/c, 3.5 < $p_T$ < 5.0 GeV/c and 5.0 < $p_T$ < 8.0 GeV/c.

More…

Global polarization of $\Xi$ and $\Omega$ hyperons in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.Lett. 126 (2021) 162301, 2021.
Inspire Record 1838481 DOI 10.17182/hepdata.100234

Global polarization of $\Xi$ and $\Omega$ hyperons has been measured for the first time in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The measurements of the $\Xi^-$ and $\bar{\Xi}^+$ hyperon polarization have been performed by two independent methods, via analysis of the angular distribution of the daughter particles in the parity violating weak decay $\Xi\rightarrow\Lambda+\pi$, as well as by measuring the polarization of the daughter $\Lambda$-hyperon, polarized via polarization transfer from its parent. The polarization, obtained by combining the results from the two methods and averaged over $\Xi^-$ and $\bar{\Xi}^+$, is measured to be $\langle P_\Xi \rangle = 0.47\pm0.10~({\rm stat.})\pm0.23~({\rm syst.})\,\%$ for the collision centrality 20%-80%. The $\langle P_\Xi \rangle$ is found to be slightly larger than the inclusive $\Lambda$ polarization and in reasonable agreement with a multi-phase transport model (AMPT). The $\langle P_\Xi \rangle$ is found to follow the centrality dependence of the vorticity predicted in the model, increasing toward more peripheral collisions. The global polarization of $\Omega$, $\langle P_\Omega \rangle = 1.11\pm0.87~({\rm stat.})\pm1.97~({\rm syst.})\,\%$ was obtained by measuring the polarization of daughter $\Lambda$ in the decay $\Omega \rightarrow \Lambda + K$, assuming the polarization transfer factor $C_{\Omega\Lambda}=1$.

4 data tables

$\Xi$ and $\Omega$ global polarization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.

The energy dependence of $\Lambda$ and $\bar{\Lambda}$ global polarization. Note that the results from previous measurements are rescaled using updated decay parameters (PDG2020), $\alpha_{\Lambda}$=0.732 and $\alpha_{\bar{\Lambda}}$=-0.758. The original data can be found in <a href="https://www.hepdata.net/record/ins1510474">this page</a>.

Centrality dependence of $\Xi$ global poalrization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.

More…

Transverse momentum dependent forward neutron single spin asymmetries in transversely polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 032007, 2021.
Inspire Record 1834002 DOI 10.17182/hepdata.106656

In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.

4 data tables

Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding

More…

Transverse single-spin asymmetries of midrapidity $\pi^0$ and $\eta$ mesons in polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 052009, 2021.
Inspire Record 1833997 DOI 10.17182/hepdata.105043

We present a measurement of the transverse single-spin asymmetry for $\pi^0$ and $\eta$ mesons in $p^\uparrow$ $+$ $p$ collisions in the pseudorapidity range $|\eta|<0.35$ and at a center-of-mass energy of 200 GeV with the PHENIX detector at the Relativistic Heavy Ion Collider. In comparison with previous measurements in this kinematic region, these results have a factor of 3 smaller uncertainties. As hadrons, $\pi^0$ and $\eta$ mesons are sensitive to both initial- and final-state nonperturbative effects for a mix of parton flavors. Comparisons of the differences in their transverse single-spin asymmetries have the potential to disentangle the possible effects of strangeness, isospin, or mass. These results can constrain the twist-3 trigluon collinear correlation function as well as the gluon Sivers function.

2 data tables

Data from Figs. 2, 4, and 5 of the transverse single-spin asymmetry of neutral pions measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $1.06\times10^{-4}$ from bunch shuffling.

Data from Figs. 3 and 4 of the transverse single-spin asymmetry of eta mesons measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $6.20\times10^{-4}$ from bunch shuffling.