The polarization parameter Pn000, the two-spin parameters Dn0n0, Kn00n, Ds0s0, and Ds0k0, and the three-spin parameters Ms0sn and Ms0kn have been measured for pp elastic scattering at 579 MeV between 34° and 118° center-of-mass scattering angle. The experiment was performed at SIN using a polarized proton beam, a polarized butanol target, and a polarimeter for the measurement of the polarization of the scattered proton. These data form the basis for a complete experimental determination of the scattering amplitudes.
No description provided.
No description provided.
VALUES OF MIXING ANGLE OMEGA (O).
The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
The reaction π−p→K0K−p has been measured from 50 to 175 GeV/c. The production characteristics of the A2 have been analyzed. We find spin and t dependence similar to lower energies, but the cross section falls rapidly with energy. In a Regge description of π−p→A2−p our data imply a rather small Pomeron-exchange component.
No description provided.
RAW CROSS SECTION WITHIN MASS CUTS.
No description provided.
We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
No description provided.
No description provided.
No description provided.
The differential cross section for the reactions γd→pn, γd→π0d, and γd→pX has been measured by using a tagged photon beam in the energy range of dibaryon resonances. The most characteristic feature of the data for γd→pn is a forward nonpeaking angular distribution. This behavior is in complete disagreement with the existing predictions which take into account the dibaryon resonances. A phenomenological analysis is made by slightly modifying the model of the Tokyo group, but no satisfactory result is obtained. The data for γd→π0d at large angles show that the differential cross section decreases exponentially as a function of pion angle. A comparison is made with a Glauber model calculation. The result seems to be rather in favor of the existence of dibaryon resonances, but a clear conclusion is not possible because of a lack of more accurate data. In the process γd→pX, a broad peak due to quasifree pion production is observed, but the limitation of experimental sensitivity does not allow us to have a definite conclusion for the dibaryon resonance of mass 2.23 GeV conjectured by the Saclay group.
No description provided.
No description provided.
FOR ANGLES >16 DEG THE OVERALL UNCERTAINTY IN ABSOLUTE NORMALIZATION IS ABOUT 10%.
None
CESIUM-IODINE DESIGNATED NUCLEUS.
CESIUM-IODINE DESIGNATED NUCLEUS.
CESIUM-IODINE DESIGNATED NUCLEUS.
The forward production of charm states in 350 GeV p-Fe interactions has been studied via the production of prompt single muons with momentum p ≳ 20 GeV/ c . The data indicate equal production of single μ + and μ − events. The observed momentum distributions can be fit with the hypothesis that D mesons are produced with an invariant cross section proportional to (1 − x F ) 5.0±0.8 exp[−(2 ± 0.3) P t ] and do not favor a large diffractive cross section predicted by intrinsic charm models. Extrapolation of the distributions to x F = 0 yields a total D D production cross section of 22.6 ± 2.1(±3.6)ωb/nucleon on the assumption of a linear A dependence and 8% average semileptonic branching ratio of charm states.
No description provided.
D ∗± production via e + e − →D ∗± X has been measured at an average CM energy of 34.4 GeV. The D ∗± energy spectrum is hard, with a maximum near χ = 0.6. The size of the D ∗ cross section, R D ∗ = σ( e + e − → D ∗ X ) σ μμ = 2.50 ± 0.64 ± 0.88 (assuming R D ∗0 = R D ∗+ ) indicates that a large fraction of charm quark production yields D ∗ mesons. The D ∗± angular distribution exhibits a forward—backward asymmetry, A = −0.28 ± 0.13. This is consistent with that expected in the standard theory for weak neutral currents and leads to | g A c | = 0.89 ± 0.44 for the axial vector coupling of the charm quark.
ASSUMES EQUAL RATES FOR CHARGED AND NEUTRAL D*'S. ONLY CHARGED ARE DETECTED.
DATA PEAKS AT X=0.6 TO 0.8.
ASYMMETRY MEASUREMENT. THETA IS THE ANGLE BETWEEN THE E- AND THE D*.
Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.
RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.
A narrow state has been observed in the reaction Σ − + Be → ( Λ K − π + π + ) + X in an experiment at the CERN SPS hyperon beam. At 2.46 GeV/ c 2 the effective ( Λ K − π + π + ) mass distribution shows an excess of 82 events above a background estimated to be 147, corresponding to a statistical significance of more than 6 standard deviations. The positive charge of the observed final state, which has strangeness −2, suggests the interpretation as a Cabibbo favoured decay of the charmed strange baryon, A + [quark content (csu)]. The cross section times branching ratio is measured to be σ · B = (5.3 ± 2.0) μ b/ (Be nucleus) for x > 0.6. The invariant production cross section is described by E d 3 σ /d p 3 ∞ (1 - x ) (1.7±0.7) exp[−(1.1 −0.4 +0.7 ) p T 2 ].
No description provided.