Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. The observation of a new type of hadronic state, a doubly charmed tetraquark containing two charm quarks, an anti-$u$ and an anti-$d$ quark, is reported using data collected by the LHCb experiment at the Large Hadron Collider. This exotic state with a mass of about 3875 MeV$/c^2$ manifests itself as a narrow peak in the mass spectrum of $D^0D^0\pi^+$ mesons just below the $D^{*+}D^0$ mass threshold. The near threshold mass together with a strikingly narrow width reveals the resonance nature of the state.
An exotic narrow state in the $D^0D^0\pi^+$ mass spectrum just below the $D^{*+}D^0$ mass threshold is studied using a data set corresponding to an integrated luminosity of 9 fb$^{-1}$ acquired with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The state is consistent with the ground isoscalar $T^+_{cc}$ tetraquark with a quark content of $cc\bar{u}\bar{d}$ and spin-parity quantum numbers $\mathrm{J}^{\mathrm{P}}=1^+$. Study of the $DD$ mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell $D^{*+}$ mesons is confirmed by the $D^0\pi^+$ mass distribution. The mass of the resonance and its coupling to the $D^{*}D$ system are analysed. Resonance parameters including the pole position, scattering length, effective range and compositeness are measured to reveal important information about the nature of the $T^+_{cc}$ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.
Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at $\sqrt{s} = 13$ TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K$^{0}_{\rm S}$) or baryon ($\Lambda$) with transverse momentum $p_{\rm T} > 3$ GeV/c is produced. Azimuthal correlations between kaons or $\Lambda$ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ($3 < p_{\rm T}^{\rm trigg} < 20$ GeV/$c$) and associated particle $p_{\rm T}$ (1 GeV/$c$$< p_{\rm T}^{\rm assoc} < p_{\rm T}^{\rm trigg}$), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K$^{0}_{\rm S}$ or $\Lambda$($\overline{\Lambda}$) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.
The interactions of kaons (K) and antikaons ($\mathrm{\overline{K}}$) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and $\mathrm{\overline{K}}$NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlations measured in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV by the ALICE Collaboration. The analysis shows that the measured p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states.
We present cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3095 MeV. The ψ(3095) resonance is established as having an assignment JPC=1−−. The mass is 3095 ±4 MeV. The partial width to electrons is Γe=4.8±0.6 keV and the total width Γ=69±15 keV. Total rates and interference measurements for the lepton channels are in accord with μ−e universality.
Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at ${\sqrt{{\textit s}}}=13$~TeV. The correlation functions are measured as a function of the relative azimuthal angle $\Delta\varphi$ and the pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum range $1 < p_{\rm T} < 8$ GeV/$c$. Near-side ($|\Delta\varphi|<1.3$) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation ($|\Delta\eta|<1.8$), while the per-trigger associated near-side yields are extracted for the short-range correlations ($|\Delta\eta|<1.3$). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region ($p_{\rm T} < 3$ GeV/$c$). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems.
Multiplicity dependence of the fragmentation yield $Y^{frag}$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, trig} < 3.0$ GeV/$c$ and $1.0 < p_\mathrm{T, assoc} < 2.0$ GeV/$c$. The mulitplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
Measurements of elliptic ($v_2$) and triangular ($v_3$) flow coefficients of $\pi^{\pm}$, K$^{\pm}$, p+$\rm \overline{p}$, K$^0_{\rm S}$, and $\Lambda + \overline{\Lambda}$ obtained with the scalar product method in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The results are obtained in the rapidity range $\left | y \right |<0.5$ and reported as a function of transverse momentum, $p_{\rm T}$, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for $p_{\rm T}<3$ GeV/$c$, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3< $p_{\rm T}$ <8 GeV/$c$). The magnitude of the baryon $v_{2}$ is larger than that of mesons up to $p_{\rm T}$ = 6 GeV/$c$. The centrality dependence of the shape evolution of the $p_{\rm T}$-differential $v_2$ is studied for the various hadron species. The $v_2$ coefficients of $\pi^{\pm}$, K$^{\pm}$, and p+$\rm \overline{p}$ are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for $p_{\rm T} <1$ GeV/$c$. A comparison with $v_{\rm n}$ measurements in the corresponding centrality intervals in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV yields an enhanced $v_2$ in central collisions and diminished value in semicentral collisions.
$v_2\{2, |\Delta\eta| > 2.0\}$ of ${\rm K}^{0}_{\rm{S}}$ as a function of $p_{\rm T}$ for the 0-5% centrality interval.
The jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at $\sqrt{s}=5.02$ TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity ($|\eta| < 0.9$). The anti-$k_{\rm T}$ algorithm is used with jet resolution parameters $R=0.2$ and $R=0.4$ for several transverse momentum $p_{\rm T}^{\text{ch jet}}$ intervals in the 20$-$100 GeV/$c$ range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, $\lambda_{\alpha}$, and groomed jet angularities, $\lambda_{\alpha\text{,g}}$, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters $\alpha = 1$, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.
Groomed jet angularity $\lambda_{\alpha,g}$ for $\alpha = 1.5$. $60<p_{\mathrm{T}}^{\mathrm{ch jet}}<80$, Soft Drop $z_{\mathrm{cut}}=0.2, \beta=0$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
We have observed a second sharp peak in the cross section for e+e−→hadrons at a center-of-mass energy of 3.695±0.004 GeV. The upper limit of the full width at half-maximum is 2.7 MeV.
Results of a search for new physics in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ at a center-of-mass energy of 13 TeV collected in the period 2015-2018 with the ATLAS detector at the Large Hadron Collider. Compared to previous publications, in addition to an increase of almost a factor of four in the data size, the analysis implements a number of improvements in the signal selection and the background determination leading to enhanced sensitivity. Events are required to have at least one jet with transverse momentum above 150 GeV and no reconstructed leptons ($e$, $\mu$ or $\tau$) or photons. Several signal regions are considered with increasing requirements on the missing transverse momentum starting at 200 GeV. Overall agreement is observed between the number of events in data and the Standard Model predictions. Model-independent $95%$ confidence-level limits on visible cross sections for new processes are obtained in the range between 736 fb and 0.3 fb. Results are also translated into improved exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, supersymmetric particles in several compressed scenarios, axion-like particles, and new scalar particles in dark-energy-inspired models. In addition, the data are translated into bounds on the invisible branching ratio of the Higgs boson.
This is the HEPData space for the ATLAS monojet full Run 2 analysis. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-06/ The full statistical likelihood is provided for this analysis. It can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <br/><br/> <b>Post-fit $p_{\mathrm{T}}^{\mathrm{recoil}}$ distribution:</b> <ul> <li><a href="102093?version=3&table=HistogramCR1mu0b">CR1mu0b</a> <li><a href="102093?version=3&table=HistogramCR1e0b">CR1e0b</a> <li><a href="102093?version=3&table=HistogramCR1L1b">CR1L1b</a> <li><a href="102093?version=3&table=HistogramCR2mu">CR2mu</a> <li><a href="102093?version=3&table=HistogramCR2e">CR2e</a> <li><a href="102093?version=3&table=HistogramSR">SR</a> </ul> <b>Exclusion contours:</b> <ul> <li>Dark Matter axial-vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMA">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMA">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMA">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMA">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMA">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMA">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMA">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMA">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMA">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter pseudo-scalar mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMP">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMP">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMP">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMP">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMP">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMP">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMP">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMP">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMP">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMV">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMV">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMV">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMV">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMV">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMV">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMV">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMV">-2 $\sigma$ expected</a> </ul> <li>Dark Matter spin-dependent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSDneutron">observed</a> <li>Dark Matter spin-independent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSInucleon">observed</a> <li>Dark Matter WIMP annihilation rate: <a href="102093?version=3&table=ContourID">observed</a> <li>SUSY stop pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsTT_directCC">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_directCC">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_directCC">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_directCC">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_directCC">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_directCC">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_directCC">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_directCC">-2 $\sigma$ expected</a> </ul> <li>SUSY stop pair production (4-body decay): <ul> <li><a href="102093?version=3&table=Contourg_obsTT_bffN">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_bffN">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_bffN">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_bffN">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_bffN">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_bffN">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_bffN">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_bffN">-2 $\sigma$ expected</a> </ul> <li>SUSY sbottom pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsBB">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1BB">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1BB">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expBB">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1BB">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1BB">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2BB">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2BB">-2 $\sigma$ expected</a> </ul> <li>SUSY squark pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsSS">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1SS">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1SS">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expSS">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1SS">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1SS">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2SS">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2SS">-2 $\sigma$ expected</a> </ul> <li>Dark energy: <a href="102093?version=3&table=ContourDE">observed and expected</a> <li>ADD: <a href="102093?version=3&table=ContourADD">observed and expected</a> <li>Axion-like particles: <a href="102093?version=3&table=ContourALPs">observed and expected</a> </ul> <b>Impact of systematic uncertainties:</b> <a href="102093?version=3&table=Tablesystimpacts">Table</a><br/><br/> <b>Yields of exclusive regions:</b> <a href="102093?version=3&table=TableyieldsEM0">EM0</a> <a href="102093?version=3&table=TableyieldsEM1">EM1</a> <a href="102093?version=3&table=TableyieldsEM2">EM2</a> <a href="102093?version=3&table=TableyieldsEM3">EM3</a> <a href="102093?version=3&table=TableyieldsEM4">EM4</a> <a href="102093?version=3&table=TableyieldsEM5">EM5</a> <a href="102093?version=3&table=TableyieldsEM6">EM6</a> <a href="102093?version=3&table=TableyieldsEM7">EM7</a> <a href="102093?version=3&table=TableyieldsEM8">EM8</a> <a href="102093?version=3&table=TableyieldsEM9">EM9</a> <a href="102093?version=3&table=TableyieldsEM10">EM10</a> <a href="102093?version=3&table=TableyieldsEM11">EM11</a> <a href="102093?version=3&table=TableyieldsEM12">EM12</a><br/><br/> <b>Yields of inclusive regions:</b> <a href="102093?version=3&table=TableyieldsIM0">IM0</a> <a href="102093?version=3&table=TableyieldsIM1">IM1</a> <a href="102093?version=3&table=TableyieldsIM2">IM2</a> <a href="102093?version=3&table=TableyieldsIM3">IM3</a> <a href="102093?version=3&table=TableyieldsIM4">IM4</a> <a href="102093?version=3&table=TableyieldsIM5">IM5</a> <a href="102093?version=3&table=TableyieldsIM6">IM6</a> <a href="102093?version=3&table=TableyieldsIM7">IM7</a> <a href="102093?version=3&table=TableyieldsIM8">IM8</a> <a href="102093?version=3&table=TableyieldsIM9">IM9</a> <a href="102093?version=3&table=TableyieldsIM10">IM10</a> <a href="102093?version=3&table=TableyieldsIM11">IM11</a> <a href="102093?version=3&table=TableyieldsIM12">IM12</a><br/><br/> <b>Cutflows:</b><br/><br/> Signals filtered with a truth $E_\mathrm{T}^\mathrm{miss}$ cut at: <a href="102093?version=3&table=Tablecutflows150GeV">150 GeV</a> <a href="102093?version=3&table=Tablecutflows350GeV">350 GeV</a><br/><br/>