Three new bosons, referred to as S, T and U, have been observed in the reaction π - + p → p + X - using the missing-mass spectrometer; their masses are 1929, 2195 and 2382 MeV, respectively. Their physical widths are equal to our experimental resolution and compatible with zero-width, with the upper limits: Γ ≤ 35, ≤ 13 and ≤ 30 MeV, respectively. They are produced with the differential cross section d σ/d t between 20 and 40 microbarn per (GeV/ c ) 2 at an average t = 0.3 (GeV/ c ) 2 .
No description provided.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb-1, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (|eta|<1.37 and 1.52<|eta|<2.37) and with an angular separation Delta R>0.4, is 44.0 (+3.2) (-4.2) pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins--Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.
The production of prompt muons ine+e− annihilation has been studied at centre of mass energies near 34.5 GeV. The measured semi-muonic branching ratios ofb andc quarks areB(b»Xμv) =0.117±0.028±0.01 andB(c→Xμv)=0.082 ±0.012a−0.01+0.02. The fragmentation functions of heavy quarks are hard, <zb>=0.85a−0.12–0.07+0.10+0.02 and <zc> =0.77a−0.07–0.11+0.05+0.03. Limits have been set on flavour changing neutral current decays:B(b→Xµ+µ−) <0.02 andB(b→Xµ+µ− (95% confidence level).
THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT MUONS.
Transverse particle momenta have been measured ine+e− annihilation into hadrons at c.m. energies between 9.4 and 31.6 GeV. The data are fully corrected for detector effects and radiation in the initial state. A comparison is made with recent QCD calculations.
MEASUREMENTS MADE WITH RESPECT TO THE SPHERICITY AXIS.
MEASUREMENTS MADE WITH RESPECT TO THE THRUST AXIS.
MEASUREMENTS MADE WITH RESPECT TO THE MOST ENERGETIC PARTON AXIS.
We report a measurement of the inclusive D/D̄ production cross section in 800 GeV/ c proton-proton interactions. The experiment used the high resolution bubble chamber LEBC exposed to an 800 GeV/ c proton beam at the Fermilab MPS. We obtain σ( D/ D ̄ )=59 −15 +22 μ b (statistical errors), having analysed 25% of the total data sample. Comparison with 400 GeV/ c pp dat a obtained with LEBC at CERN shows a D/D̄ cross section increase by a factor of 1.7 −0.5 +0.7 . This is in good agreement with fusion model calculations.
No description provided.
No description provided.
PAGE FROM PREPRINT.
The cross section for γp→π−Δ++(1236), measured at 5, 8, 11, and 16 GeV from nearzero momentum transfer to -1 GeV2 (-2 GeV2 at 16 GeV), rises from small t to a maximum near −t=mπ2, then falls as e12t out to −t≈0.2 GeV2, after which it becomes roughly equal in slope and magnitude to the single π+ photoproduction cross section (e3t). At fixed t, the cross section varies as k−2, where k is the laboratory photon energy. The results do not agree well with the simple vector-dominance model.
'1'.
'1'.
'1'.
Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.
'1'.
'1'.
'1'.
We present the general properties of jets produced bye+e− annihilation. Their production and fragmentation characteristics have been studied with charged particles for c.m. energies between 12 and 43 GeV. In this energy rangee+e− annihilation into hadrons is dominated by pair production of the five quarksu, d, s, c andb. In addition, hard gluon bremsstrahlung effects which are invisible at low energies become prominent at the high energies. The observed multiplicity distributions deviate from a Poisson distribution. The multiplicity distributions for the overall event as well as for each event hemisphere satisfy KNO scaling to within ∼20%. The distributions ofxp=2p/W are presented; scale breaking is observed at the level of 25%. The quantityxpdδ/dxp is compared with multigluon emission calculations which predict a Gaussian distribution in terms of ln(1/x). The observed energy dependence of the maximum of the distributions is in qualitative agreement with the calculations. Particle production is analysed with respect to the jet axis and longitudinal and transverse momentum spectra are presented. The angular distribution of the jet axis strongly supports the idea of predominant spin 1/2 quark pair production. The particle distributions with respect to the event plane show clearly the growing importance of planar events with increasing c.m. energies. They also exclude the presence of heavy quark production,e+e−→Q\(\bar Q\) for quark masses up to 5<mQ<20.3 GeV (|eQ|=2/3) and 7<mQ<19 GeV (|eQ|=1/3). The comparison of 1/σtotdδ/dpT measured at 14, 22 and 34 GeV suggests that hard gluon bremsstrahlung contributes mainly to transverse momenta larger than 0.5 GeV/c. The rapidity distribution forW≧22 GeV shows an enhancement away fromy=0 which corresponds to an increase in yield of 10–15% compared to the centre region (y=0). The enhancement probably results from heavy quark production and gluon bremsstrahlung. The particle flux around the jet axis shows with increasing c.m. energy a rapidly growing number of particles collimated around the jet axis, while at large angles to the jet axis almost noW dependence is observed. For fixed longitudinal momentump‖ approximate “fan invariance” is seen: The shape of the angular distribution around the jet axis is almost independent ofW. The collimation depends strongly onp‖. For smallp‖,p‖<0.2 GeV/c, isotropy is observed. With increasingp‖ the particles tend to be emitted closer and closer to the jet axis.
R VALUES BELOW 32.5 GEV ARE IDENTICAL TO THOSE GIVEN IN BRANDELIK ET AL., PL 113B, 499 (1982).
No description provided.
CHARGED PARTICLE MULTIPLICITY DISTRIBUTIONS.
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.
No description provided.