We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720~MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A^V_{ed} was measured for the reaction \pol{2H}(\pol{e},e'n)p at a four-momentum transfer squared of 0.21 (GeV/c)^2 from which a value for the charge form factor of the neutron was extracted.
No description provided.
A search for doubly-charged Higgs bosons decaying to pairs of electrons and/or muons is presented. The search is performed using a data sample corresponding to an integrated luminosity of 4.7 fb-1 of pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC. Pairs of prompt, isolated, high-pT leptons with the same electric charge (ee, emu, mumu) are selected, and their invariant mass distribution is searched for a narrow resonance. No significant excess over Standard Model background expectations is observed, and limits are placed on the cross section times branching ratio for pair production of doubly-charged Higgs bosons. The masses of doubly-charged Higgs bosons are constrained depending on the branching ratio into these leptonic final states. Assuming pair production, coupling to left-handed fermions, and a branching ratio of 100% for each final state, masses below 409 GeV, 375 GeV, and 398 GeV are excluded for ee, emu, mumu, respectively.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to left-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to right-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
The interactions of $\bar p$ with D(2), Li(7), C(12), S(32), Cu(64) and Pb(207) nuclei at $40 GeV/c$ were studied by RISC-streamer chamber spectrometer. The yields of $K^0$ mesons and $\Lambda$ and $\bar\Lambda$ hyperons as functions of the target nucleus mass numbers are investigated. The experimental results are compared with model predictions using $FRITIOF-7.02$ program package.
No description provided.
A-dependence of particle yields were fitted to the Y=const*A**power.
Three new bosons, referred to as S, T and U, have been observed in the reaction π - + p → p + X - using the missing-mass spectrometer; their masses are 1929, 2195 and 2382 MeV, respectively. Their physical widths are equal to our experimental resolution and compatible with zero-width, with the upper limits: Γ ≤ 35, ≤ 13 and ≤ 30 MeV, respectively. They are produced with the differential cross section d σ/d t between 20 and 40 microbarn per (GeV/ c ) 2 at an average t = 0.3 (GeV/ c ) 2 .
No description provided.
A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. A total of 7 candidate events are observed while 7.5 pm 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.
Missing ET distribution.
Signal Point Information: (1) Number of Monte Carlo events generated (2) Total signal cross section (pb) (3) Signal acceptance (4) Relative uncertainty on acceptance (5) CLs expected (6) CLs observed.
The observed limit contour in the GLUINO-NEUTRALINO plane.
Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at sqrt(s)=7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb-1 are used. Good agreement is observed between the data and the Standard Model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.
95% CL observed and expected upper limits on M_D as a function of the number of extra-dimensions considering LO signal cross sections. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
95% CL observed and expected upper limits on M_D as a function of the number of extra-dimensions considering NLO signal cross sections. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
95% CL observed and expected upper limits on M_* for spin-independent (D1) WIMP models. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.
Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.
Charged particle multiplicity as a function of pseudorapidity.
Charged particle multiplicity as a function of transverse momentum.
The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over |eta| < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of sqrt(s_NN) = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point 'tracklets' and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < |eta| < 4.9. Measurements are presented of the per-event charged particle density distribution, dN_ch/deta, and the average charged particle multiplicity in the pseudorapidity interval |eta|<0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower sqrt(s_NN) results. The shape of the dN_ch/deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 0-10, 10-20, 20-30 and 30-40 %.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 40-50, 50-60, 60-70 and 70-80 %.
Mean values of the charged particle multiplicities in the pseudorapidiy range -0.5-0.5 as a function of centrality. N(C=PART), the number of participating nucleons in the collision, is also shown, determined from the muliplicity and ET of the event, with which it has been shown to be strongly correlated.
This Letter presents the first search for supersymmetry in final states containing one isolated electron or muon, jets, and missing transverse momentum from sqrt{s} = 7 TeV proton-proton collisions at the LHC. The data were recorded by the ATLAS experiment during 2010 and correspond to a total integrated luminosity of 35 pb-1. No excess above the standard model background expectation is observed. Limits are set on the parameters of the minimal supergravity framework, extending previous limits. For A_0 = 0 GeV, tan beta = 3, mu > 0 and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% confidence level.
Distribution of ET(C=MISSING) IN GEV for data and background MC calculation.
Distribution of MT IN GEV for data and background MC calculation.
Distribution of M(C=EFFECTIVE) IN GEV for data and background MC calculation.