Exclusive and dissociative J/$\psi$ photoproduction, and exclusive dimuon production, in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 108 (2023) 112004, 2023.
Inspire Record 2654315 DOI 10.17182/hepdata.144875

The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.

6 data tables

Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval

Exclusive J/psi photoproduction cross section in p-Pb UPC.

Dissociative J/psi photoproduction cross section in p-Pb UPC.

More…

Measurement of the diffractive cross-section in deep inelastic scattering

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 70 (1996) 391-412, 1996.
Inspire Record 415942 DOI 10.17182/hepdata.44849

Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm

3 data tables

No description provided.

No description provided.

No description provided.


A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…