Date

Pion-Proton Charge-Exchange Scattering from 500 to 1300 MeV

Chiu, Charles B. ; Eandi, Richard D. ; Helmholz, A.Carl ; et al.
Phys.Rev. 156 (1967) 1415-1426, 1967.
Inspire Record 52278 DOI 10.17182/hepdata.750

Differential cross sections for the reaction π−p→π0n were measured at nine incident-pion kinetic energies in the interval from 500 to 1300 MeV. The negative pion beam from the bevatron was focused on a liquidhydrogen target completely surrounded by a cubic array of six steel-plate spark chambers. The spark chambers were triggered on events with neutral final states. Charge-exchange events were identified from the one-shower and two-shower events in the spark-chamber pictures. By the Monte Carlo technique, the π0 distributions were calculated from the bisector distributions of the two-shower π0 events together with the observed γ-ray distributions of the one-shower π0 events. These π0 distributions were fitted with both Legendre-polynomial expansions and power-series expansions by the method of least squares. The extrapolated forward differential cross sections are in good agreement with the dispersion calculations. The Legendre coefficients for the differential cross sections in isospin state T=12 were obtained by combining our results with available data on π±p elastic scattering. In the light of existing phase-shift solutions, the behavior of these coefficients is discussed. The D5F5 interference term that peaks near 900 MeV is verified to be in isospin state T=12 only. We report here also the total neutral cross sections and the cross sections for the production of neutral multipion final states 2π0n and 3π0n. The 4π solid angle and the calibrated energy response of the spark chambers contribute to the accuracy of the results.

19 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the $\pi^+ p$ and $\pi^- p$ Polarization Parameters at 100 GeV/c

Auer, I.P. ; Hill, D. ; Sandler, B. ; et al.
Phys.Rev.Lett. 39 (1977) 313, 1977.
Inspire Record 121138 DOI 10.17182/hepdata.20982

We report measurements of the polarization parameters in π+p and π−p elastic scattering at an incident momentum of 100 GeV/c. The results cover the range 0.18<~−t<~1.4 GeV2 and are in agreement with current Regge-model predictions.

3 data tables match query

No description provided.

No description provided.

No description provided.


Polarization in elastic pi- p scattering at 16 momenta between 865 and 2732 mev/c

Albrow, M.G. ; Andersson-Almehed, S. ; Bosnjakovic, B. ; et al.
Nucl.Phys.B 37 (1972) 594-620, 1972.
Inspire Record 75295 DOI 10.17182/hepdata.8091

Polarization distributions and differential cross section data for elastic scattering of negative pions on protons between 865 and 2732 MeV/ c are presented. They are compared with published phase-shift analyses.

48 data tables match query

No description provided.

No description provided.

No description provided.

More…

Neutral $D$ Meson Properties in 360-{GeV}/$c \pi^- p$ Interactions

The LEBC-EHS collaboration Aguilar-Benitez, M. ; Allison, W.W. ; Bagnaia, P. ; et al.
Phys.Lett.B 146 (1984) 266-272, 1984.
Inspire Record 202656 DOI 10.17182/hepdata.30495

Based on a sample of 22 four-prong D 0 / D 0 decays produced in hydrogen by 360 GeV/ c π − , we present the following new results: mean lifetime τ = (3.5 −0.9 +1.4 ) x 10 −13 s ; production cross section for x F > 0.0, σ = (10.3 ± 3.5) ωb ; the D → K ± π ± π + π − branching ratio = (7.1 ± 2.5)%.

1 data table match query

No description provided.


Experimental J/psi Hadronic Production from 150-GeV/c to 280-GeV/c

The NA3 collaboration Badier, J. ; Boucrot, J. ; Bourotte, J. ; et al.
Z.Phys.C 20 (1983) 101, 1983.
Inspire Record 191240 DOI 10.17182/hepdata.2212

A detailed study ofJ/ψ hadronic production has been performed in a high statistics experiment (more than 1.5 106J/ψ observed in their dimuon decay mode). Data have been taken with incident π±,K±,p±, on hydrogen and platinum targets, at 150, 200 and 280 GeV/c. We find from the observed nuclear dependance of the cross sections, that about 18% of theJ/ψ are produced diffractively. Using known structure functions of the quarks in the nucleon and in the pion, we derive estimations for the gluon structure functions.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

A Comparison of the Shapes of pi+ p and p p Diffraction Peaks from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, Robert E. ; Maclay, G.J. ; et al.
Phys.Rev.Lett. 37 (1976) 548, 1976.
Inspire Record 108238 DOI 10.17182/hepdata.21073

The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.

1 data table match query

ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.


A Study of the Reaction $\pi^- p \to \phi \phi n$ at 16-{GeV}/$c$

The Aachen-Bari-Bonn-CERN-Glasgow-Liverpool-Milan collaboration Armstrong, T.A. ; Baccari, B. ; Booth, P.S.L. ; et al.
Nucl.Phys.B 196 (1982) 176-188, 1982.
Inspire Record 165251 DOI 10.17182/hepdata.34217

The reaction π − p → φφ n has been isolated at 16 GeV/ c and its cross section determined to be 40 ± 10 nb. The φφ mass spectrum shows a threshold enhancement between 2.1 and 2.5 GeV. A successful description of the angular content of the φφ system requires two interferingss J P = 2 + states.

2 data tables match query

No description provided.

SLOPE OF DIFFERENTIAL TP(P=3,P=2) DISTRIBUTION.


Analysis of the Inclusive Reaction $\pi^- p \to K^*$ (890) X0 at 10-{GeV}/c

The Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milan-Vienna collaboration Di Gennaro, V. ; Evangelista, C. ; Ghidini, B. ; et al.
Nucl.Phys.B 173 (1980) 107-126, 1980.
Inspire Record 153000 DOI 10.17182/hepdata.34495

Experimental results on the reaction π − p → K ∗0 (890) X 0 at 10 GeV /c are presented. By using the K ∗0 polarization measurements, a detailed study of the production has been carried out as a function of the missing mass squared and of the four-momentum trasnfer squared to the K ∗0 . We found that: (a) K ∗0 production is dominated by natural parity exchange; (b) K ∗0 helicity-zero production dominates the unnatural parity exchange contribution and (c) the main features of the reaction are in agreement with the predictions of the finite mass sum rules.

4 data tables match query

TO TAL (NATURAL+UNATURAL PARITY EXCHANGE) CROSS-SECTIONS.

NATURAL PARITY EXCHANGE CROSS-SECTIONS.

UNATURAL PARITY EXCHANGE CROSS-SECTIONS.

More…

Measurement and Analysis of the Reaction $\pi^- p \to \rho^0 n$ on a Polarized Target

The CERN-Munich collaboration Becker, H. ; Blanar, G. ; Blum, W. ; et al.
Nucl.Phys.B 150 (1979) 301-325, 1979.
Inspire Record 132603 DOI 10.17182/hepdata.34819

The reaction π − p→ π + π − n has been measured in a high-statistics experiment on a transversely polarized proton target at 17.2 GeV, and unexpectedly large nucleon polarization effects have been observed. Combining the results of this experiment with a measurement on a hydrogen target allows a model-independent partial-wave analysis in terms of the “nucleon transversity” amplitudes. Unique or at most twofold ambiguous solutions are obtained. In particular we find a high lower limit ( ⪆30% ) of the spin non-flip unnatural exchange amplitudes at low | t |. These amplitudes, interpreted as being due to the exchange of an object with the quantum numbers of the A 1 , have been assumed to be absent in previous analyses. In checking the consequences of this finding on the old results, we test the validity of the rank-two assumotions for the density matrix. We find a small but significant deviation, which shows the need for a new phase-shift analysis including the A 1 exchange contribution.

2 data tables match query

MASS DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS SCALED TO 100 PCT POLARIZED PROTONS.

T DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS IN THE RHO REGION SCALED TO 100 PCT POLARIZED PROTONS.


Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 &lt; m_{3\pi} &lt; 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 &lt; t' &lt; 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables match query

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).