Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

10 data tables

Data simulation comparison (with arbitrary normalization). Di-jet invariant mass.

Data simulation comparison (with arbitrary normalization). Difference between jet pseudorapidities.

Data simulation comparison (with arbitrary normalization). Difference between jet azimuthal angles.

More…

Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

7 data tables

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.

More…

GENERAL FEATURES AND CLUSTER - LIKE PROPERTIES OF REACTION K+ p ---> K+ p 2 pi+ 2 pi- AT 32-GeV/c

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Chliapnikov, P.V. ; et al.
Sov.J.Nucl.Phys. 34 (1981) 584, 1981.
Inspire Record 165495 DOI 10.17182/hepdata.10705

None

58 data tables

No description provided.

No description provided.

No description provided.

More…

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.Lett. 105 (2010) 161801, 2010.
Inspire Record 865423 DOI 10.17182/hepdata.57036

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.

2 data tables

The dijet mass distribution (NUMBER OF EVENTS).

95 PCT CL upper limit of the cross section x acceptance.


Di-jet production in gamma-gamma collisions at LEP2

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 58 (2008) 531-541, 2008.
Inspire Record 806241 DOI 10.17182/hepdata.51688

The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.

11 data tables

Total cross section for dijet production. Errors are combined statistics and systematics.

Measured dijet production cross section as a function of the mean jet transverse momentum. Errors include both statistics and systematics.

Measured dijet production cross section as a function of jet pseudorapiditydifference. Errors include both statistics and systematics.

More…

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…

Determination of alpha-s using the next-to-leading log approximation of QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 21-34, 1993.
Inspire Record 354909 DOI 10.17182/hepdata.50115

A new measurement of αs is obtained from the distributions in thrust, heavy jet mass, energy-energy correlation and two recently introduced jet broadening variables following a method proposed by Cata

7 data tables

Thrust distribution corrected for detector acceptance and initial state photon radiation.

Heavy jet mass (RHO) distribution (THRUST definition) corrected for detect or acceptance and initial state photon radiation.

Heavy jet mass (RHOM) distribution (MASS definition) corrected for detectoracceptance and initial state photon radiation.

More…

The scale dependence of the hadron multiplicity in quark and gluon jets and a precise determination of C(A)/C(F).

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 383-400, 1999.
Inspire Record 495414 DOI 10.17182/hepdata.49173

Data collected at the Z resonance using the DELPHI detector at LEP are used to determine the charged hadron multiplicity in gluon and quark jets as a function of a transverse momentum-like scale. The colour factor ratio, \cacf, is directly observed in the increase of multiplicities with that scale. The smaller than expected multiplicity ratio in gluon to quark jets is understood by differences in the hadronization of the leading quark or gluon. From the dependence of the charged hadron multiplicity on the opening angle in symmetric three-jet events the colour factor ratio is measured to be: C_A/C_F = 2.246 \pm 0.062 (stat.) \pm 0.080 (syst.) \pm 0.095 (theo.)

3 data tables

Charged multiplicity in events with a hard photon, as a function of the apparent centre-of-mass energy (SQRT(S)) of the hadronic system. The errors shown are statistical only.

Charged multiplicity in symmetric three jet events as function of the opening angle between the low energetic jets, THETA1. Jets are defined from charged and neutral particles using the DURHAM algorithm. The errors shown are statistical only.

Twice the difference of the multiplicity in three jet events and in qqbar events of comparable scale 2(N_3jet-N_qqbar). The three-jet event multiplicity isequal to the data of Fig. 3c), the qqbar-multiplicity is taken from a fit of th e e+e- data corrected for the varying b-quark contribution. This multiplicity can be identified with the multiplicity of a hypothetical gluon-gluon event. Thereis a normalization uncertainty (i.e. a scale independent constant) of the gluon -gluon event multiplicity which should not influence the slope of the gg-multiplicity with scale (see paper). The errors shown are statistical only.


Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

Energy dependence of the differences between the quark and gluon jet fragmentation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 70 (1996) 179-196, 1996.
Inspire Record 403254 DOI 10.17182/hepdata.48064

Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$

2 data tables

No description provided.

Durham and JADE algoritms were used.


Identified particles in quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 401 (1997) 118-130, 1997.
Inspire Record 428228 DOI 10.17182/hepdata.47615

A sample of about 1.4 million hadronic Z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of K + , K 0 , p , Λ and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.

2 data tables

Y events.

Mercedes events.


Measurement of the multiplicity of gluons splitting to bottom quark pairs in hadronic Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 405 (1997) 202-214, 1997.
Inspire Record 442880 DOI 10.17182/hepdata.47486

An inclusive measurement of the average multiplicity of b b pairs from gluons, g b b , in hadronic Z 0 events collected by the DELPHI experiment at LEP, is presented. A counting technique, based on jet b -tagging in 4-jet events, has been used. Looking for secondary bottom production in events with production of any primary flavour, by requiring two b -tagged jets in well defined topological configurations, gave g b b = (0.21 ± 0.11 ( stat ) ± 0.09 ( syst ))% . This result was checked with a different method designed to select events with four b quarks in the final state. Agreement within the errors was found.

1 data table

No description provided.


Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

Experimental study of the triple gluon vertex

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 255 (1991) 466-476, 1991.
Inspire Record 301659 DOI 10.17182/hepdata.48514

In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .

1 data table

NC, CF, and TR are the color factors for SU(3) group.


Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.


Evidence for the triple gluon vertex from measurements of the QCD color factors in Z decay into four jets

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 151-162, 1992.
Inspire Record 333127 DOI 10.17182/hepdata.48505

None

1 data table

NC, CF, and TF are the color factors for SU(N) group. For SU(3) they are equal to: NC = 3, CF = 4/3, and TF = 1/2.


Study of prompt photon production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1995) 1-14, 1995.
Inspire Record 397391 DOI 10.17182/hepdata.48136

None

3 data tables

Rates for gamma + 1 jet.

Rates for gamma + 2 jet.

Rates for gamma + 3 jet.


Charged particle multiplicity distributions for fixed number of jets in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 56 (1992) 63-76, 1992.
Inspire Record 334948 DOI 10.17182/hepdata.14533

The multiplicity distributions of charged particles in full phase space and in restricted rapidity intervals for events with a fixed number of jets measured by the DELPHI detector are presented. The data are well reproduced by the Lund Parton Shower model and can also be well described by fitted negative binomial distributions. The properties of these distributions in terms of the clan model are discussed. In symmetric 3-jet events the candidate gluon jet is found not to be significantly different in average multiplicity than the mean of the other two jets, thus supporting previous results of the HRS and OPAL experiments. Similar results hold for events generated according to the LUND PS and to the HERWIG models, when the jets are defined by the JADE jet finding algorithm. The method seems to be insensitive for measuring the color charge ratio between gluons and quarks.

3 data tables

Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.01.

Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.02.

Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.04.


Determination of $alpha_{s}$ in second order {QCD} from hadronic $Z$ decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 54 (1992) 55-74, 1992.
Inspire Record 333272 DOI 10.17182/hepdata.14603

Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.

9 data tables

Experimental differential Thrust distributions.

Experimental differential Oblateness distributions.

Experimental differential C-parameter distributions.

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

41 data tables

Sphericity distribution.

Sphericity distribution.

Aplanarity distribution.

More…

Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table

The second DSYS error is the theoretical error.


A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.