Date

Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2025) 011, 2025.
Inspire Record 2750408 DOI 10.17182/hepdata.146028

The inclusive jet cross section is measured as a function of jet transverse momentum $p_\mathrm{T}$ and rapidity $y$. The measurement is performed using proton-proton collision data at $\sqrt{s}$ = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb$^{-1}$. The jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm using a distance parameter of $R$ = 0.4, within the rapidity interval $\lvert y\rvert$$\lt$ 2, and across the kinematic range 0.06 $\lt$$p_\mathrm{T}$$\lt$ 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization / factorization scales and the strong coupling $\alpha_\mathrm{S}$.

0 data tables match query

Measurement of $b$-quark fragmentation properties in jets using the decay $B^{\pm} \to J/\psi K^{\pm}$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 12 (2021) 131, 2021.
Inspire Record 1913061 DOI 10.17182/hepdata.94220

The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.

0 data tables match query

Search for metastable heavy charged particles with large ionization energy loss in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 93 (2016) 112015, 2016.
Inspire Record 1448101 DOI 10.17182/hepdata.73584

This paper presents a search for massive charged long-lived particles produced in pp collisions at $\sqrt{s}=$ 13 TeV at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as $R$-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\sqrt{s}=$ 8 TeV dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and masses are set. Gluino $R$-hadrons with lifetimes above 0.4 ns and decaying to $q\bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 GeV and 1590 GeV. In the case of stable $R$-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.

0 data tables match query

Measurement of the $CP$ properties of Higgs boson interactions with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 563, 2023.
Inspire Record 2613280 DOI 10.17182/hepdata.131601

A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.

0 data tables match query

Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 84 (2024) 842, 2024.
Inspire Record 2780732 DOI 10.17182/hepdata.150596

A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum $p_\mathrm{T}$. This observable is measured in multijet events over the range of $p_\mathrm{T}$ = 360-3170 GeV based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb$^{-1}$. The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1177 $\pm$ 0.0013 (exp) $_{-0.0073}^{+0.0116}$ (theo) = 0.1177 $_{-0.0074}^{+0.0117}$, where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of $\alpha_\mathrm{S}(m_\mathrm{Z})$ in the TeV region shows no deviation from the expected NLO pQCD behaviour.

0 data tables match query

Measurements of polarization and spin correlation and observation of entanglement in top quark pairs using lepton+jets events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 110 (2024) 112016, 2024.
Inspire Record 2829523 DOI 10.17182/hepdata.153301

Measurements of the polarization and spin correlation in top quark pairs ($\mathrm{t\bar{t}}$) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the $\mathrm{t\bar{t}}$ system and the top quark scattering angle in the $\mathrm{t\bar{t}}$ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the $\mathrm{t\bar{t}}$ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for $\mathrm{t\bar{t}}$ states at the production threshold and at high masses of the $\mathrm{t\bar{t}}$ system. Entanglement is observed for the first time in events at high $\mathrm{t\bar{t}}$ mass, where a large fraction of the $\mathrm{t\bar{t}}$ decays are space-like separated, with an expected and observed significance of above 5 standard deviations.

0 data tables match query

Observation of coherent $\phi$(1020) meson photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\text{NN}}$ = 5.36 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-009, 2025.
Inspire Record 2908607 DOI 10.17182/hepdata.156183

The first observation of coherent $\phi$(1020) meson photoproduction off heavy nuclei is presented using ultraperipheral lead-lead collisions at a center-of-mass energy per nucleon pair of 5.36 TeV. The data were collected by the CMS experiment and correspond to an integrated luminosity of 1.68 $\mu$b$^{-1}$. The $\phi$(1020) meson signals are reconstructed via the K$^+$K$^-$ decay channel. The production cross section is presented as a function of the $\phi$(1020) meson rapidity in the range 0.3 $\lt$$\lvert y\rvert$$\lt$ 1.0, probing gluons that carry a fraction of the nucleon momentum ($x$) around $10^{-4}$. The observed cross section exhibits little dependence on rapidity and is significantly suppressed, by a factor of ${\sim}$5, compared to a baseline model that treats a nucleus as a collection of free nucleons. Theoretical models that incorporate either nuclear shadowing or gluon saturation predict suppression of the $\phi$(1020) meson cross section with only a small dependence on rapidity, but the magnitude of the predicted suppression varies greatly. Models considering only nuclear shadowing effects result in the best agreement with the experimental data. This study establishes a powerful new tool for exploring nuclear effects and nuclear gluonic structure in the small-$x$ regime at a unique energy scale bridging the perturbative and nonperturbative quantum chromodynamics domains.

0 data tables match query

Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton--lead collisions at $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 199, 2016.
Inspire Record 1386475 DOI 10.17182/hepdata.69240

The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 $\mu$b$^{-1}$ of proton--lead collisions at a nucleon--nucleon centre-of-mass energy of $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The $p$+Pb collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the $p$+Pb collision have been carried out using the Glauber model as well as two Glauber--Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon--nucleon collisions in the modelling of the initial state of $p$+Pb collisions.

0 data tables match query

Determination of the strong coupling constant $\alpha_s$ from transverse energy-energy correlations in multijet events at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 872, 2017.
Inspire Record 1609253 DOI 10.17182/hepdata.77269

Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to $\sqrt{s} = 8$ TeV proton-proton collisions with an integrated luminosity of 20.2 fb$^{-1}$. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of $\alpha_s(\mu)$ predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields $\alpha_s(m_Z) = 0.1162 \pm 0.0011 \mbox{ (exp.)}^{+0.0084}_{-0.0070} \mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\alpha_s(m_Z) = 0.1196 \pm 0.0013 \mbox{ (exp.)}^{+0.0075}_{-0.0045} \mbox{ (theo.)}$.

0 data tables match query

Search for jet quenching with dijets from high-multiplicity pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 07 (2025) 118, 2025.
Inspire Record 2911293 DOI 10.17182/hepdata.156764

The first measurement of the dijet transverse momentum balance $x_j$ in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV is presented. The $x_j$ observable, defined as the ratio of the subleading over leading jet transverse momentum in a dijet pair, is used to search for jet quenching effects. The data, corresponding to an integrated luminosity of 174.6 nb$^{-1}$, were collected with the CMS detector in 2016. The $x_j$ distributions and their average values are studied as functions of the charged-particle multiplicity of the events and for various dijet rapidity selections. The latter enables probing hard scattering of partons carrying distinct nucleon momentum fractions $x$ in the proton- and lead-going directions. The former, aided by the high-multiplicity triggers, allows probing for potential jet quenching effects in high-multiplicity events (with up to 400 charged particles), for which collective phenomena consistent with quark-gluon plasma (QGP) droplet formation were previously observed. The ratios of $x_j$ distributions for high- to low-multiplicity events are used to quantify the possible medium effects. These ratios are consistent with simulations of the hard-scattering process that do not include QGP production. These measurements set an upper limit on medium-induced energy loss of the subleading jet of 1.26% of its transverse momentum at the 90% confidence level in high multiplicity pPb events.

0 data tables match query