New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 5% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 10% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 10% to 20% centrality $Au+Au$.
Differential measurements of the elliptic (v_2) and hexadecapole (v_4) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p_T) and collision centrality or the number of participant nucleons (N_part) for Au+Au collisions at sqrt(s_NN)=200 GeV. The v_{2,4} measurements at pseudorapidity |\eta|<=0.35 obtained with four separate reaction plane detectors positioned in the range 1.0<|\eta|<3.9 show good agreement, indicating the absence of significant \eta-dependent nonflow perturbations. Sizable values for v_4(p_T) are observed with a ratio v_4(p_T,N_part)/v_2^2(p_T,N_part)~0.8 for 50<N_part<200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N_part>200 this ratio increases up to 1.7 in the most central collisions.
Glauber quantities ($N_{part}$, $N_{coll}$, $b$) for Au+Au collisions at 200 GeV (PHENIX Run 2007)
Event-plane resolution factors vs. $N_{part}$ for $v_2$ and $v_4$ measurements for the indicated event planes.
Comparison of $v_2$ vs. $N_{part}$ and $v_4$ vs. $N_{part}$ for charged hadrons obtained with several reaction plane detectors for the $p_T$ selections indicated.
Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T < 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).
Average away-side $I^{head}_{AA}$ above 2 GeV/$c$ for various $\pi^0$ trigger momenta in central and midcentral collisions where $|\Delta\phi - \pi| < \pi/6$. Note: a 6% scale uncertainty applies to all $I_{AA}$ values.
Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in $p+p$ collisions.
Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in Au+Au collisions.
The PHENIX experiment has measured the suppression of semi-inclusive single high transverse momentum pi^0's in Au+Au collisions at sqrt(s_NN) = 200 GeV. The present understanding of this suppression is in terms of energy-loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN^g/dy, the medium transport coefficient <q^hat>, or the initial energy-loss parameter epsilon_0. We find that high transverse momentum pi^0 suppression in Au+Au collisions has sufficient precision to constrain these model dependent parameters at the +/1 20%-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.
$\pi^0$ $0-5\%$ centrality
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \tau_0 ~ 9 fm/c and a mean proper emission duration \Delta\tau ~ 2 fm/c, leading to sizable emission time differences (<|\Delta \tau_LCM |> ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in 'burning' of the emission source reminiscent of many hydrodynamical models.
1D correlation function. Systematic errors are less than the statistical errors.
Experimental correlation moments $R^0(q)$ Data. Systematic errors are less than the statistical errors.
Experimental correlation moments $R^0(q)$ Fit. Systematic errors are less than the statistical errors.