Comparison of the Particle Flow in $q \bar{q} \gamma$ and $q \bar{q} g$ Events From $e^+ e^-$ Annihilations at {PETRA}

The JADE collaboration Saada, F.Ould ; Allison, J. ; Ambrus, K. ; et al.
Z.Phys.C 39 (1988) 1, 1988.
Inspire Record 260834 DOI 10.17182/hepdata.15623

The particle flow distributions in the event plane of 3-jet\((e^ +e^ -\to q\bar qg)\) and of radiative 2-jet\((e^ +e^ -\to q\bar q\gamma )\) events are compared at a centre of mass energy of 35 GeV. The number of particles in the angular region opposite to the gluon in\(q\bar qg\) events is found to be significantly reduced relative to the number of particles in the region opposite to the hard photon in\(q\bar q\gamma \) events. This depletion is expected from the “string effect” observed in 3-jet events. It can be explained within the framework of QCD as arising from soft gluon interference.

1 data table

Data requested from authors.


A Study of coherence of soft gluons in hadron jets

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 617-628, 1990.
Inspire Record 297564 DOI 10.17182/hepdata.49561

We study the inclusive momentum distribution of charged particles in multihadronic events produced in e + e − annihilations at E CM ∼ M (Z 0 ). We find agreement with the analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from CM energies between 14 and 91 GeV, we study the dependence of the inclusive momentum distribution on the centre of momentum energy. We find that the analytical formulae describe the data over the entire energy range. Both the momentum distribution at a fixed energy and the change with energy are described by QCD shower Monte Carlo's which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and momentum spectra.

1 data table

Statistical errors only. Overall systematic error of 5%.


Determination of alpha-s from the scaling violation in the fragmentation functions in e+ e- annihilation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 311 (1993) 408-424, 1993.
Inspire Record 355937 DOI 10.17182/hepdata.48411

A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .

2 data tables

No description provided.

Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.


Production of charged particles, K0(s), K+-, p and Lambda in Z --> b anti-b events and in the decay of b hadrons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 347 (1995) 447-466, 1995.
Inspire Record 392257 DOI 10.17182/hepdata.48180

A sample of events enriched in bb̄ quark pairs was selected in the data recorded by the DELPHI experiment at LEP during 1992 and 1993, by the presence of secondary decay vertices from short-lived particles. Using this sample, the average multiplicities of K s 0 , K ± , p(p̄), Λ( Λ ) and of charged particles in bb̄ events have been measured, distinguishing the component from fragmentation and the component coming from the decay of b-hadrons. The measurement of the average charge multiplicity in bb̄ events was used to compute the mean fractional beam energy carried by the primary b-hadron, and the difference in charged particle multiplicity between bb̄ events and light quark (uū, dd̄, ss̄) events.

9 data tables

Event multiplicity in bottom events.

Differential cross section for charged particles in BOTTOM tagged hemispheres.

Differential cross section for charged particles in untagged hemispheres.

More…

Charged particle multiplicity distributions for fixed number of jets in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 56 (1992) 63-76, 1992.
Inspire Record 334948 DOI 10.17182/hepdata.14533

The multiplicity distributions of charged particles in full phase space and in restricted rapidity intervals for events with a fixed number of jets measured by the DELPHI detector are presented. The data are well reproduced by the Lund Parton Shower model and can also be well described by fitted negative binomial distributions. The properties of these distributions in terms of the clan model are discussed. In symmetric 3-jet events the candidate gluon jet is found not to be significantly different in average multiplicity than the mean of the other two jets, thus supporting previous results of the HRS and OPAL experiments. Similar results hold for events generated according to the LUND PS and to the HERWIG models, when the jets are defined by the JADE jet finding algorithm. The method seems to be insensitive for measuring the color charge ratio between gluons and quarks.

3 data tables

Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.01.

Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.02.

Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.04.


Measurement of charged-particle multiplicity distributions and their H(q) moments in hadronic Z decays at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 577 (2003) 109-119, 2003.
Inspire Record 565148 DOI 10.17182/hepdata.49796

The charged-particle multiplicity distribution is measured for all hadronic events as well as for light-quark and b-quark events produced in e+e- collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated. The H moments of the multiplicity distributions are studied, and their quasi-oscillations as a function of the rank of the moment are investigated.

6 data tables

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution without KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for light quark events.

More…

Charged Multiplicity of Hadronic Events Containing Heavy Quark Jets

Rowson, P.C. ; Trilling, G. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 54 (1985) 2580-2583, 1985.
Inspire Record 212819 DOI 10.17182/hepdata.20380

The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.

7 data tables
More…

A Comparison of the Particle Flow in Three Jet and Radiative Two Jet Events From $e^+ e^-$ Annihilation at $e$({CM}) = 29-{GeV}

Sheldon, P.D. ; Trilling, G. ; Petersen, A. ; et al.
Phys.Rev.Lett. 57 (1986) 1398, 1986.
Inspire Record 230941 DOI 10.17182/hepdata.20219

We have made a detailed comparison of the charged-particle flow in three-jet events (e+e−→qq¯g) and radiative two-jet events (e+e−→qq¯γ) from e+e− annihilation at Ec.m.=29 GeV. Accurate comparisons can be made because these two event types have similar topologies. In the angular region between the quark and antiquark jets, we observe substantially fewer charged tracks in the two-jet events than in the radiative three-jet events.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of inclusive monmentum spectra and multiplicity distributions of charged particles at s**(1/2) approx. 2-GeV to 5-GeV.

The BES collaboration Dunwoodie, W. ; Bai, J.Z. ; Ban, Y. ; et al.
Phys.Rev.D 69 (2004) 072002, 2004.
Inspire Record 622224 DOI 10.17182/hepdata.22183

Inclusive momentum spectra and multiplicity distributions of charged particles measured with BESII detector at center of mass energies of 2.2,2.6,3.0,3.2,4.6 and 4.8 GeV are presented. Values of the second binomial moment, $R_2$, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy $e^+e^-$, $ep$ and $p\bar{p}$ experiments and QCD calculations.

12 data tables

Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.2 GeV.. Errors are statistical and systematic added in quadrature.

Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.6 GeV.. Errors are statistical and systematic added in quadrature.

Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 3.0 GeV.. Errors are statistical and systematic added in quadrature.

More…

Charged Particle Multiplicity Distributions in $e^+ e^-$ Annihilation at 29-{GeV}: A Comparison With Hadronic Data

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Z.Phys.C 35 (1987) 323, 1987.
Inspire Record 235873 DOI 10.17182/hepdata.15773

The charged particle multiplicity distributions for two-jet events ine+e− annihilation at 29 GeV have been measured using the High Resolution Spectrometer at PEP. A Poisson distribution describes the data for both the complete event and for the single jets. In addition, no correlation is observed between the multiplicities in the two jets of an event. For fixed values of the prong number of the complete event, the multiplicity sharing between the two jets is in good agreement with a binomial distribution. The rapidity gap distribution is exponential with a slope equal to the mean rapidity density. These observations, which are consistent with a picture of independent emission of single particles, are contrasted to the results from soft hadronic collisions and conclusions are drawn about the nature of clusters.

4 data tables

Charged Particle Multiplicity distributions for single jet and whole event from the two jet sample. The numerical values are given in the paper Derrick et al, PR D34 (86) 3304, and are coded in this database as (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1437> RED = 1437 </a>).

Single Jet Mean Multiplicities.

Total event charged multiplicities.

More…