We present evidence from the CLEO detector for the charmed strange baryon Ξc0. It is seen in nonresonant e+e− annihilations at s of 10.5 GeV through its decay to Ξ−π+. The measured Ξc0 mass is 2471 ± 3 ± 4 MeV/c2.
Production cross section times branching fraction for the sum of both particle and antiparticle. Error contains both statistics and systematics. X is defined as SQRT(P(P=3)**2/(EBEAM**2-M(P=3)**2)).
The production of φ-meson pairs has been observed in 400-GeV/c proton-nucleon interactions at the Fermilab multiparticle spectrometer in the inclusive reaction pN→φφ+X, where each φ decays to a K+K− pair. A fast (200 nsec) high-level processor was used to selectively trigger on events containing two pairs of oppositely charged kaons having low invariant masses. The experimental apparatus and trigger processor are described. The cross section for φφ production and an upper limit for ηc production are presented.
No description provided.
We have searched for resonances in the reaction e+e−→hadrons, γγ, μμ, and ee, in the energy range 39.79
No description provided.
Over 100 unambiguous π − + p → Λ + Λ + n events have been observed in a magnet spark chamber. The data provide good evidence for peripheral production of Λ Λ and n Λ (via meson exchange) and against peripheral n Λ (double baryon exchange). No resonances in the Λ Λ system are observed. Angular distributions and Λ( Λ ) polarizations are analysed.
Axis error includes +- 0.0/0.0 contribution (?////Corrected for neutral decays, absorption).
We have analyzed 2560 events in the final-state K O 1 K O 1 n produced in π − p interactions at 5, 7 and 12 GeV/ c . We observe the S ∗ (1070), f O and A 2 decaying into K O 1 K O 1 . Resonance parameters, cross sections, and branching ratios are given.
Cross section times branching ratio.
Interactions between 4.15-Bev protons and the free hydrogen nuclei in nuclear emulsion are examined. The total elastic cross section from 27 events was determined to be 11.0±2.6 mb. On the basis of 113 interactions the total inelastic cross section was found to be 28.1±3.1 mb. The partial cross sections corresponding to inelastic collisions having two, four, six, and eight secondary particles were found to be respectively 16.3±2.4, 11.5±1.8, 0.2±0.1, and 0.1±0.1 mb. While the total inelastic cross section varies slowly with energy, the partial inelastic cross sections were found to be strongly energy dependent. The observed angular distribution of elastically scattered protons in the center-of-mass system was sharply peaked in the forward and backward directions, in fair agreement with calculations based on a simple optical model applicable for energies between 2 and 10 Bev. Particles produced in inelastic collisions were identified as pions or protons by measurements of energy loss and multiple scattering. For those particles identified, center-of-mass system distributions of energy, angle, and transverse momentum are presented.
'ALL'.