Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.
Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.
Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.
Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.
We present a new measurement of the total photoproduction cross section performed with the H1 detector at HERA. For an average centre of mass energy of 200GeV a value of $\sigma_{tot}~{\gamma{p}}= 165\pm2\pm11\mu$b has been obtained. A detailed analysis of the data in adequate kinematic regions enabled a decomposition of the total cross section in its elastic, single diffractive dissociation and remaining non-diffractive parts, based on safe assumptions on the double diffractive dissociation contribution.
No description provided.
A measurement is presented of the cross section for D* meson production in diffractive deep-inelastic scattering for the first time at HERA. The cross section is given for the process ep -> eXY, where the system X contains at least one D* meson and is separated by a large rapidity gap from a low mass proton remnant system Y. The cross section is presented in the diffractive deep-inelastic region defined by 2< Q^2 < 100 GeV^2, 0.05 < y < 0.7, x_pom < 0.04, M_Y < 1.6 GeV and |t| < 1 GeV^2. The D* mesons are restricted to the range ptD* > 2 GeV and |\eta_D* | < 1.5. The cross section is found to be 246+-54+-56 pb and forms about 6% of the corresponding inclusive D* cross section. The cross section is presented as a function of various kinematic variables, including z_pom^obs which is an estimate of the fraction of the momentum of the diffractive exchange carried by the parton entering the hard-subprocess. The data show a large component of the cross section at low z_pom^obs where the contribution of the Boson-Gluon-Fusion process is expected to dominate. The data are compared with several QCD--based calculations.
The total D*+- production cross section for the given kinematic region. Also given is the ratio to the DIS*+- production cross section in the samekinematic region.
Cross section as a function of X(NAME=POMERON).
Cross section as a function of LOG10(BETA). BETA = X/X(NAME=POMERON).
K − p reactions have been studied at 13 different incident momenta between 1138 and 1434 MeV/ c . This interval corresponds to a mass of the K − p system varying from 1858 to 1993 MeV. About 300 000 photographs were taken in the 81 cm Saclay hydrogen bubble chamber exposed to a separated K − beam at the CERN proton-synchrotron. A total of about 44 000 events were analyzed, from which partial and differential cross sections were determined. Polarizations were obtained for the two-body reactions where the decay of the Λ or Σ hyperon allowed their measurement. Data for the two-body channels are presented here as well as for the main quasi-two-body reactions.
PARTIAL CROSS SECTIONS. DATA AT 1.305 TO 1.434 GEV/C FOR FINAL STATES K- P, K- P PI0 AND K- N PI+ COME FROM THE HAIFA GROUP, S. DADO ET AL.
No description provided.
No description provided.
A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 44 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x_pom values.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of Q**2.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average transverse momentum of the two jets in the c.m.frame.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average pseudorapidity of the two jets in the lab frame.
The cross section for the diffractive deep-inelastic scattering process $ep \to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \xpom <0.1 in fractional proton longitudinal momentum loss, 0.08 < |t| < 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 < Q^2 < 50 GeV^2 in photon virtuality and 0.004 < \beta = x / \xpom < 1, where x is the Bjorken scaling variable. For $\xpom \lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\rm d} \sigma / {\rm d} t \propto e^{6 t}$, independently of \xpom, \beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \xpom, \beta and Q^2. The \xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\alpha_{\pom}(0)=1.114 \pm 0.018 ({\rm stat.}) \pm 0.012 ({\rm syst.}) ^{+0.040}_{-0.020} ({\rm model})$ and a sub-leading exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q^2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.
No description provided.
No description provided.
No description provided.
Results on \jpsi\ production in $e p$ interactionsin the H1 experiment at HERA are presented. The \jpsi\ mesons are produced by almost real photons ($Q~2\approx 0$) and detected via their leptonic decays. The data have been taken in 1994 and correspond to an integrated luminosity of $2.7\,\mbox{pb}~{-1}$. The $\gamma p$ cross section for elastic \jpsi\ production is observed to increase strongly with the \cm\ energy. The cross section for diffractive $J/\psi$ production with proton dissociation is found to be of similar magnitude as the elastic cross section. Distributions of transverse momentum and decay angle are studied and found to be in accord with a diffractive production mechanism. For inelastic \jpsi\ production the total $\gamma p$ cross section, the distribution of transverse momenta, and the elasticity of the \jpsi\ are compared to NLO QCD calculations in a colour singlet model and agreement is found. Diffractive \psiprime\ production has been observed and a first estimate of the ratio to \jpsi\ production in the HERA energy regime is given.
Combined cross section for ELASTIC J/PSI production with proton dissociation.
Slope for J/PSI production with proton dissociation.
Cross section for PSI(3685) production.