Date

Single neutral pion production by charged-current $\bar{\nu}_\mu$ interactions on hydrocarbon at $\langle E_\nu \rangle = $ 3.6 GeV

The MINERvA collaboration Le, T. ; Palomino, J.L. ; Aliaga, L. ; et al.
Phys.Lett.B 749 (2015) 130-136, 2015.
Inspire Record 1351216 DOI 10.17182/hepdata.73317

Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $\bar{\nu}_e$ appearance oscillation experiments. The differential cross sections for $\pi^0$ momentum and production angle, for events with a single observed $\pi^0$ and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the $\pi^0$ kinematics for this process.

2 data tables match query

Flux-averaged differential cross section in $\pi^0$ momentum, $d\sigma/dp_{\pi^0}(10^{-40}\text{cm}^2/\text{nucleon}/(\text{GeV/c})$, for 1$\pi^0$ production with statistical (stat) and systematic (sys) uncertainties.

Flux-averaged differential cross section in $\pi^0$ angle, $d\sigma/d\theta_{\pi^0}(10^{-42}\text{cm}^2/\text{nucleon}/\text{deg.})$, for 1$\pi^0$ production with statistical (stat) and systematic (sys) uncertainties.


Electroproduction of Eta Mesons in the S11(1535) Resonance Region at High Momentum Transfer

Dalton, M.M. ; Adams, G.S. ; Ahmidouch, A. ; et al.
Phys.Rev.C 80 (2009) 015205, 2009.
Inspire Record 783943 DOI 10.17182/hepdata.50548

The differential cross-section for the process p(e,e'p)eta has been measured at Q2 ~ 5.7 and 7.0 (GeV/c)2 for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the channel. This is the highest momentum transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A_1/2, for the production of the S11(1535) resonance, is extracted from the data. This quantity appears to begin scaling as 1/Q3, a predicted signal of the dominance of perturbative QCD, at Q2 ~ 5 (GeV/c)2.

39 data tables match query

Total cross section for the lower Q**2 data as a function of W. The errors are statistics and systematic added in quadrature.

Total cross section for the higher Q**2 data as a function of W. The errors are statistics and systematic added in quadrature.

Lower Q**2 extracted differential cross section at W = 1.500 GeV and cos(theta(eta) = -0.917, -0.750 and -0.583.

More…

Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2

The Jefferson Lab F(pi)-2 collaboration Horn, T. ; Aniol, K. ; Arrington, J. ; et al.
Phys.Rev.Lett. 97 (2006) 192001, 2006.
Inspire Record 721062 DOI 10.17182/hepdata.31560

The H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.

3 data tables match query

Separated cross sections at mean Q**2 of 1.60 GeV**2.

Separated cross sections at mean Q**2 of 2.45 GeV**2.

Extracted values of the charged pion form-factor. Errors are the statistical and experimental systematics combined in quadrature.


Measurements of electron proton elastic cross sections for 0.4-(GeV/c)**2 < Q**2 < 5.5-(GeV/c)**2.

The E94110 collaboration Christy, M.E. ; Ahmidouch, A. ; Armstrong, C.S. ; et al.
Phys.Rev.C 70 (2004) 015206, 2004.
Inspire Record 643262 DOI 10.17182/hepdata.31763

We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.

7 data tables match query

Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.

Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.

Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.

More…

Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

Villano, A.N. ; Stoler, P. ; Bosted, P.E. ; et al.
Phys.Rev.C 80 (2009) 035203, 2009.
Inspire Record 823260 DOI 10.17182/hepdata.54189

The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

125 data tables match query

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.

More…

The proton and deuteron F_2 structure function at low Q^2

Tvaskis, V. ; Arrington, J. ; Asaturyan, R. ; et al.
Phys.Rev.C 81 (2010) 055207, 2010.
Inspire Record 844968 DOI 10.17182/hepdata.56742

Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.

62 data tables match query

Proton and Deuteron F2 structure function for an x value of 0.040, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.060, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.080, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

More…

Search for $B^{+}\to K^{+}\nu\bar{\nu}$ decays using an inclusive tagging method at Belle II

The Belle-II collaboration Abudinén, F. ; Adachi, I. ; Adamczyk, K. ; et al.
Phys.Rev.Lett. 127 (2021) 181802, 2021.
Inspire Record 1860766 DOI 10.17182/hepdata.130199

A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.

0 data tables match query

Tests of light-lepton universality in angular asymmetries of $B^0 \to D^{*-} \ell \nu$ decays

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.Lett. 131 (2023) 181801, 2023.
Inspire Record 2685572 DOI 10.17182/hepdata.144759

We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.

0 data tables match query

Measurement of Differential Branching Fractions of Inclusive ${B \to X_u \, \ell^+\, \nu_{\ell}}$ Decays

The Belle collaboration Cao, L. ; Sutcliffe, W. ; Van Tonder, R. ; et al.
Phys.Rev.Lett. 127 (2021) 261801, 2021.
Inspire Record 1895149 DOI 10.17182/hepdata.131599

The first measurements of differential branching fractions of inclusive semileptonic ${B \to X_u \, \ell^+\, \nu_{\ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. Differential branching fractions are reported as a function of the lepton momentum, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic ${B \to X_c \, \ell^+\, \nu_{\ell}}$ decays and other processes, and corrected for resolution and acceptance effects. The measured distributions are compared to predictions from inclusive and hybrid ${B \to X_u \, \ell^+\, \nu_{\ell}}$ calculations.

0 data tables match query

Measurements of $q^2$ Moments of Inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ Decays with Hadronic Tagging

The Belle collaboration van Tonder, R. ; Cao, L. ; Sutcliffe, W. ; et al.
Phys.Rev.D 104 (2021) 112011, 2021.
Inspire Record 1917200 DOI 10.17182/hepdata.138985

We present the measurement of the first to fourth order moments of the four-momentum transfer squared, $q^2$, of inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ decays using the full Belle data set of 711 $\mathrm{fb}^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance where $\ell = e, \mu$. The determination of these moments and their systematic uncertainties open new pathways to determine the absolute value of the CKM matrix element $V_{cb}$ using a reduced set of matrix elements of the heavy quark expansion. In order to identify and reconstruct the $X_c$ system, we reconstruct one of the two $B$-mesons using machine learning techniques in fully hadronic decay modes. The moments are measured with progressively increasing threshold selections on $q^2$ starting with a lower value of 3.0 $\mathrm{GeV}^2$ in steps of 0.5 $\mathrm{GeV}^2$ up to a value of 10.0 $\mathrm{GeV}^2$. The measured moments are further unfolded, correcting for reconstruction and selection effects as well as QED final state radiation. We report the moments separately for electron and muon final states and observe no lepton flavor universality violating effects.

0 data tables match query