This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0\to D^{*-}\ell^+\nu_\ell$ using 711 fb$^{-1}$ of Belle data collected near the $\Upsilon(4S)$ resonance. We simultaneously measure the product of the form factor normalization $\mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $\rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0\to D^{*-}\ell^+\nu_\ell$ decays, are $\rho^2=1.214\pm 0.034\pm 0.009$, $R_1(1)=1.401\pm 0.034\pm 0.018$, $R_2(1)=0.864\pm 0.024\pm 0.008$ and $\mathcal{F}(1)|V_{cb}|=(34.6\pm 0.2\pm 1.0)\times 10^{-3}$. The branching fraction of $B^0\to D^{*-}\ell^+\nu_\ell$ is measured at the same time/ we obtain a value of $\mathcal{B}(B^0 \to D^{*-}\ell^+ \nu_\ell) = (4.58 \pm 0.03 \pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $\mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.
We report a high-statistics measurement of differential cross sections for the process gamma gamma -> pi^0 pi^0 in the kinematic range 0.6 GeV <= W <= 4.0 GeV and |cos theta*| <= 0.8, where W and theta* are the energy and pion scattering angle, respectively, in the gamma gamma center-of-mass system. Differential cross sections are fitted to obtain information on S, D_0, D_2, G_0 and G_2 waves. The G waves are important above W ~= 1.6 GeV. For W <= 1.6 GeV the D_2 wave is dominated by the f_2(1270) resonance while the S wave requires at least one additional resonance besides the f_0(980), which may be the f_0(1370) or f_0(1500). The differential cross sections are fitted with a simple parameterization to determine the parameters (the mass, total width and Gamma_{gamma gamma}B(f_0 -> pi^0 pi^0)) of this scalar meson as well as the f_0(980). The helicity 0 fraction of the f_2(1270) meson, taking into account interference for the first time, is also obtained.
Differential cross section for W = 2.14, 2.18 and 2.22 GeV.
We report on a high statistics measurement of the total and differential cross sections of the process gamma gamma -> pi^+ pi^- in the pi^+ pi^- invariant mass range 0.8 GeV/c^2 < W < 1.5 GeV/c^2 with 85.9 fb^{-1} of data collected at sqrt{s}=10.58 GeV and 10.52 GeV with the Belle detector. A clear signal of the f_0(980) resonance is observed in addition to the f_2(1270) resonance. An improved 90% confidence level upper limit Br.(eta'(958) -> pi^+ pi^-) < 2.9 x 10^{-3} is obtained for P- and CP-violating decay of the eta'(958) meson using the most conservative assumption about the interference with the background.
No description provided.
$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.
Total cross section for the process GAMMA GAMMA --> K0S K0S.
Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.
Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.
We present a measurement of angular observables, $P_4'$, $P_5'$, $P_6'$, $P_8'$, in the decay $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$, where $\ell^+\ell^-$ is either $e^+e^-$ or $\mu^+\mu^-$. The analysis is performed on a data sample corresponding to an integrated luminosity of $711~\mathrm{fb}^{-1}$ containing $772\times 10^{6}$ $B\bar B$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy $e^+e^-$ collider KEKB. Four angular observables, $P_{4,5,6,8}'$ are extracted in five bins of the invariant mass squared of the lepton system, $q^2$. We compare our results for $P_{4,5,6,8}'$ with Standard Model predictions including the $q^2$ region in which the LHCb collaboration reported the so-called $P_5'$ anomaly.
Results of the angular analysis of $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$ (where $\ell = e,\mu$) in five bins of $q^2$, the di-lepton invariant mass squared.
We report the first observation of e+e- -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi-, and first evidence for e+e- -> Upsilon(3S)pi+pi-, Upsilon(1S)K+K-, near the peak of the Upsilon(5S) resonance at sqrt{s}~10.87 GeV. The results are based on a data sample of 21.7 fb^-1 collected with the Belle detector at the KEKB e+e- collider. The observed cross-sections are sigma(Upsilon(1S)pi+pi-) = 1.61+-0.10(stat)+-0.12(sys) pb and sigma(Upsilon(2S)pi+pi-) = 2.35+-0.19(stat)+-0.32(sys) pb. Attributing these signals to the Upsilon(5S) resonance, the partial widths Gamma(Upsilon(5S)->Upsilon(1S)pi+pi-) = 0.59+-0.04(stat)+-0.09(sys) MeV and Gamma(Upsilon(5S)->Upsilon(2S)pi+pi-) = 0.85+-0.07(stat)+-0.16(sys) MeV are inferred. These are much larger than any partial widths for previously observed Upsilon(nS) -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi- decays.
Cross section for the final state UPSI(1S) K+ K-.
The precise determination of the CKM matrix element $\left| V_{cb}\right|$ is important for carrying out tests of the flavour sector of the Standard Model. In this article we present a preliminary analysis of the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay mode and its charge conjugate, selected in events that contain a fully reconstructed $B$-meson, using 772 million $e^+ \, e^- \to \Upsilon(4S) \to B \bar B$ events recorded by the Belle detector at KEKB. Unfolded differential decay rates of four kinematic variables fully describing the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay in the $B$-meson rest frame are presented. We measure the total branching fraction $\mathcal{B}( \bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell ) = \left(4.95 \pm 0.11 \pm 0.22 \right) \times 10^{-2}$, where the errors are statistical and systematic respectively. The value of $\left|V_{cb} \right|$ is determined to be $\left( 37.4 \pm 1.3 \right) \times 10^{-3}$. Both results are in good agreement with current world averages.
The unfolded differential rate as a function of $w$.
The unfolded differential rate as a function of $\cos\theta_\nu$.
The unfolded differential rate as a function of $\cos\theta_\ell$.
We report a measurement of the exclusive $e^+e^- \to D^{(*)\pm}{D}{}^{*\mp}$ cross section as a function of center-of-mass energy near the $D^{(*)^{\pm}}{D}{}^{*\mp}$ threshold with initial state radiation. A partial reconstruction technique is used to increase the efficiency and to suppress background. The analysis is based on a data sample collected with the Belle detector at the $\Upsilon(4S)$ resonance and nearby continuum with an integrated luminosity of 547.8 $\mathrm{fb}^{-1}$ at the KEKB asymmetric-energy $e^+ e^-$ collider.
Cross section for E+ E- --> D*+ D*-.
Cross section for E+ E- --> D+ D*- (plus charged conjugate).
We report the first observation of the $\psi(4415)$ resonance in the reaction $\e^+e^-\to D^0 D^-\pi^+$ and a measurement of its cross section in the center-of-mass energy range $4.0\mathrm{GeV}$ to $5.0\mathrm{GeV}$ with initial state radiation. From a study of resonant structure in $\psi(4415)$ decay we conclude that the $\psi(4415)\to D^0 D^-\pi^+$ decay is dominated by $\psi(4415)\to D \bar D{}^{*}_2(2460)$. We obtain $\mathcal{B}(\psi(4415)\to D^0 D^-\pi^+_{\mathrm {non-resonant}})/\mathcal{B}(\psi(4415)\to D \bar D{}^{*}_2(2460)\to D^0 D^-\pi^+)<0.22$ at 90% C.L. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of 673 $\mathrm{fb}^{-1}$.
The measured cross section for E+ E- --> D0 D- PI+.
We present an analysis of charm quark fragmentation at 10.6 GeV, based on a data sample of 103 fb collected by the Belle detector at the KEKB accelerator. We consider fragmentation into the main charmed hadron ground states, namely \DZ, \DP, \Ds and \LC, as well as the excited states \DSZ and \DSP. The fragmentation functions are important to measure as they describe processes at a low energy scale, where calculations in perturbation theory lead to large uncertainties. Fragmentation functions can also be used as input distributions for Monte Carlo generators. Additionally, we determine the average number of these charmed hadrons produced per B decay at the \Ys resonance and measure the distribution of their production angle in \epem annihilation events and in B decays.