We have performed a hyperon-proton scattering experiment with a scintillating fiber active target. The Σ − p, Λ p and Σ + p scattering have been studied with the same experimental setup. In this paper, we present the differential cross sections of the Σ − p elastic scattering in the momentum region from 400 to 700 MeV /c . This is the first measurement of the Σ − p elastic scattering in the momentum region where the P- and higher waves contributions are important. The present data are in good agreement with the one boson exchange model (Bonn–Jülich model A) and the quark cluster model (FSS of Kyoto–Niigata model).
No description provided.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
A full set of optimized observables is measured in an angular analysis of the decay B$^0$$\to$ K$^*$(892)$^0\mu^+\mu^-$ using a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. The analysis is performed in six bins of the squared invariant mass of the dimuon system, $q^2$, over the range 1.1 $\lt$$q^2$$\lt$ 16 GeV$^2$. The results are among the most precise experimental measurements of the angular observables for this decay and are compared to a variety of predictions based on the standard model. Some of these predictions exhibit tension with the measurements.
Results for the $F_\mathrm{L}$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_1$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_2$ angular observable. The first uncertainties are statistical and the second systematic.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
Enhanced production of ΛΛ pairs, above the prediction of a two-step process model, is observed near threshold (around the masses of 2.23 – 2.26 GeV/c 2 ) in the 12 C(K − ,K + ) reaction at P K − = 1.66GeV/c using a scintillating fiber target. The differential cross section for the ΛΛ production averaged over 2.3° ≤ $$ K + ≤ 14.7° in the momentum region 0.95 ≤ p K + ≤ 1.3GeV/c was found to be 7.6 ± 1.3 μb/sr, and that for the enhancement approximately 3 μb/sr.
No description provided.
No description provided.
No description provided.
The double strangeness exchange reaction ( K − , K + ) is investigated with respect to the sub-threshold production of scalar and vector mesons ( f 0 / a 0 / φ ) decaying into K + K − and the two-step processes induced by intermediate mesons and Ξ − hyperons at p k − = 1.66 GeV/ c using a scintillating fiber active target. The differential cross section ( 〈 dσ dΩ L 〉) averaged over the angular interval (2.3° ⩽ θ K + L ⩽ 14.7°) for the sub-threshold f 0 / a 0 / φ meson production with the K + K − decay is 11 ± 6 μ b/sr at 0.6 ⩽ p K 1 < 0.95 GeV/ c . The present result differs significantly from the theoretical calculation which predicts the contribution of the f 0 / a 0 / φ meson production to be predominant in the ( K − , K + ) reaction below p K + = 0.95 GeV/ c . We found a sizable contribution from two-step ( K − , K + processes, characterized by production of two S = −1 hyperons, consistent with the result of the intra-nuclear cascade (INC) model calculation with respect to the meson-induced hyperon (or hyperon resonance) pair production in the momentum region 0.6 ⩽ p K + < 0.95 GeV/ c . The observed enhancement of the cross section for the two-step ΛΛ production beyond the prediction of the INC model at p K + ⋍ 1.1 GeV /c could be due to the Ξ − p → ΛΛ reaction in 12 C.
No description provided.
No description provided.
No description provided.
Σ + p elastic scattering has been studied using a scintillating fiber block (SCIFI) which served as a target for the production of Σ + hyperons as well as for subsequent Σ + scattering on hydrogen. A new technique for the analysis of the hyperon-nucleon scattering in the SCIFI has been developed and established. In this paper, Σ + p elastic scattering events have been identified in the Σ + momentum range of 300–600 MeV/ c , and differential cross sections have been obtained at two angles. The results are compared with various theoretical baryon-baryon interaction models.
No description provided.