Date

Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

8 data tables match query

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.

More…

The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

The COMPASS collaboration Alexeev, M.G. ; Alexeev, G.D. ; Amoroso, A. ; et al.
Phys.Rev.D 105 (2022) 012005, 2022.
Inspire Record 1898933 DOI 10.17182/hepdata.114098

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

4 data tables match query

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

More…

Search for a Z-prime at the Z resonance

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S.P. ; et al.
Phys.Lett.B 306 (1993) 187-196, 1993.
Inspire Record 355489 DOI 10.17182/hepdata.28919

The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,

4 data tables match query

Data taken during 1990.

Data taken during 1991.

Data taken during 1990.

More…

Measurement of cross-sections and leptonic forward - backward asymmetries at the z pole and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Z.Phys.C 62 (1994) 551-576, 1994.
Inspire Record 374696 DOI 10.17182/hepdata.48198

We report on the measurement of the leptonic and hadronic cross sections and leptonic forward-backward asymmetries at theZ peak with the L3 detector at LEP. The total luminosity of 40.8 pb−1 collected

12 data tables match query

Results from 1990 data. Additional systematic uncertainty of 0.4 pct.. Efficiency corrected cross section for both leptons inside the angular range 44 to 136 degrees with an acollinearity cut of < 25 degrees.

Results from 1991 data. Additional systematic uncertainty of 0.3 pct.. Efficiency corrected cross section for both leptons inside the angular range 44 to 136 degrees with an acollinearity cut of < 25 degrees.

Results from 1992 data. Additional systematic uncertainty of 0.3 pct.. Efficiency corrected cross section for both leptons inside the angular range 44 to 136 degrees with an acollinearity cut of < 25 degrees.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 13 (2000) 553-572, 2000.
Inspire Record 504989 DOI 10.17182/hepdata.49123

Cross-sections and angular distributions for hadronic and lepton pair final states in e+e- collisions at a centre-of-mass energy near 189 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a sneutrino in supersymmetric theories with R-parity violation. A search for the indirect effects of the gravitational interaction in extra dimensions on the mu+mu- and tau+tau- final states is also presented.

3 data tables match query

The cross sections for electron -pair production with various angular cuts.

The forward-backward asymmetry in electron-pair production for cos(theta_e) <0.7.

The angular distribution for electron-pair production. The errors include statistical and systematic effects combined.


Weak Neutral Currents in e+ e- Collisions at s**(1/2)=29-GeV

Levi, M.E. ; Blocker, C.A. ; Strait, J. ; et al.
Phys.Rev.Lett. 51 (1983) 1941, 1983.
Inspire Record 191845 DOI 10.17182/hepdata.3281

The differential cross sections for lepton pair production in e+e− annihilation at 29 GeV have been measured and found to be in good agreement with the standard model of the electroweak interaction. With the assumption of e−μ−τ universality, the weak neutral-current couplings are determined to be ga2=0.23±0.05 and gv2=0.03±0.04.

1 data table match query

Data requested from authors.


A MEASUREMENT OF ALPHA-ALPHA ELASTIC SCATTERING AT THE CERN ISR

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 152 (1985) 140-144, 1985.
Inspire Record 206315 DOI 10.17182/hepdata.30430

We present measurements of the αα elastic scattering differential cross section at √ s = 126 GeV in the range 0.05 ⩽ ‖ t ‖

2 data tables match query

ERRORS ARE STATISTICAL ONLY.

EXPONENTIAL FIT TO CROSS SECTION BELOW T = 0.075 GEV**2.


Precision measurements of the neutral current from hadron and lepton production at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 58 (1993) 219-238, 1993.
Inspire Record 352696 DOI 10.17182/hepdata.14495

New measurements of the hadronic and leptonic cross sections and of the leptonic forward-backward asymmetries ine+e− collisions are presented. The analysis includes data recorded up to the end of 1991 by the OPAL experiment at LEP, with centre-of-mass energies within ±3 GeV of the Z0 mass. The results are based on a recorded total of 454 000 hadronic and 58 000 leptonic events. A model independent analysis of Z0 parameters based on an extension of the improved Born approximation is presented leading to test of lepton universality and an interpretation of the results within the Standard Model framework. The determination of the mass and width of the Z0 benefit from an improved understanding of the LEP energy calibration.

2 data tables match query

Systematic error of 0.45 pct not included.

Additional systematic error of 0.003.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

5 data tables match query

Cross sections within the polar angle range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error 1.2 pct not included.

Cross sections, after t-channel subtraction, and correction for acceptance to the full solid angle and the full acollinearity angle distribution.. Overall systematic error is 1.2 pct not included.

Cross section within the polar angle range 25 < THETA < 35 degrees plus the symmetric interval 145 < THETA < 160 degrees.. Overall systematic error is 1.4 pct not included.

More…

Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

2 data tables match query

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The forward-backward charge asymmetry in E+ E- --> E+ E- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.70 and THETA(C=ACOL) < 10 degrees, and the energy of each fermion required to be greater than 6 GeV. Statistical errors only are shown. Also given are the asymmetries after correction for the beam energy spread to correspond to the physical asymmetryat the central value of SQRT(S).