A combination of searches for singly and doubly charged Higgs bosons, $H^{\pm}$ and $H^{\pm\pm}$, produced via vector-boson fusion is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production cross-section times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination.
Post-fit $m_{\mathrm{WZ}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.
Post-fit $m_{\mathrm{T}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.
Expected and observed exclusion limits at 95% CL for $\sigma_{\mathrm{VBF}}(H_{5}^{\pm}) \times \mathcal{B}(H_{5}^{\pm} \to W^{\pm}Z)$ as a function of $m_{\mathrm{H_5}}$. The inner (outer) band represents the $68\%$ ($95\%$) confidence interval around the median expected limit.