This paper describes a measurement of the W boson transverse momentum distribution using ATLAS pp collision data from the 2010 run of the LHC at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of about 31 pb^-1. Events from both W -> e nu and W -> mu nu are used, and the transverse momentum of the W candidates is measured through the energy deposition in the calorimeter from the recoil of the W. The resulting distributions are unfolded to obtain the normalized differential cross sections as a function of the W boson transverse momentum. We present results for pTW < 300 GeV in the electron and muon channels as well as for their combination, and compare the combined results to the predictions of perturbative QCD and a selection of event generators.
The normalized, differential cross secton measured in the W to Electron decay channel for the three different PT definitions, Born, Dressed and Bare.
The normalized, differential cross secton measured in the W to Muon decay channel for the three different PT definitions, Born, Dressed and Bare.
The normalized, differential cross secton from the Muon and Electron decay channel Combined for the Born-level PT definition.
The Drell-Yan differential cross section is measured in pp collisions at sqrt(s) = 7 TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15-600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions.
The DY spectrum normalized to the Z0 region and to the mass bin widths.
The DY spectrum normalized to the Z0 region for the dimuon channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
The DY spectrum normalized to the Z0 region for the dielectron channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 TO 1.37.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 TO 1.81.
A measurement of the Z/gamma* transverse momentum (p_T^Z)) distribution in proton-proton collisions at sqrt(s)=7 TeV is presented using Z/gamma*->e+e- and Z/gamma*->mu+mu- decays collected with the ATLAS detector in data sets with integrated luminosities of 35 pb^-1 and 40 pb^-1, respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to p_T^Z of 350 GeV for invariant dilepton masses 66 GeV
The measured normalized differential fiducial cross sections for the E+ E- decay channel for the three different treatments of QED final state radiation.
The measured normalized differential fiducial cross sections for the MU+ MU- decay channel for the three different treatments of QED final state radiation.
The combined measured normalized differential fiducial and acceptance corrected cross sections for the combined E+ E- and MU+ MU- decay channels. The second DSYS error for the corrected cross section is the uncertainty on the acceptance correction.
Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb^-1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.
Total inclusive jet cross section as a function of the jet multiplicity.
Ratio of the n-jet cross section to the (n-1) jet cross section.
Differential cross section as a function of the leading jet PT for events with jet multiplicity >= 2.
The ATLAS experiment has measured the production cross-section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set acquired in 2010 is used, corresponding to an integrated luminosity of 37 pb^-1. The background, consisting of hadronic jets and isolated electrons, is estimated with fully data-driven techniques and subtracted. The differential cross-sections, as functions of the di-photon mass, total transverse momentum and azimuthal separation, are presented and compared to the predictions of next-to-leading-order QCD.
The measured differential cross section as a function of the invariant mass of the di-photon pair.
The measured differential cross section as a function of the transverse momentum of the di-photon pair.
The measured differential cross section as a function of the azimuthal angular separation of the photons in the di-photon pair.
The B^0_s differential production cross section is measured as functions of the transverse momentum and rapidity in pp collisions at sqrt(s) = 7 TeV, using the J/Psi phi decay, and compared with predictions based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 inverse picobarns. The B^0_s is reconstructed from the decays J/Psi to an oppositely charged muon pair and phi to K+ K-. The integrated B^0_s cross section times B^0_s to J/Psi phi branching fraction in the range 8 < pt(B) < 50 GeV/c and |y(b)| < 2.4 is measured to be 6.9 +/- 0.6 +/- 0.6 nb, where the first uncertainty is statistical and the second is systematic.
Total integrated B/S cross section times the branching fraction to J/PSI PHI in the given kinematic range.
The measured differential cross section as a function of the transverse momentum of the B/S in the |rapidity| range < 24.
The measured differential cross section as a function of the rapidity of the B/S in the transverse momentum range 8 to 50 GeV.
Measurements of the differential production cross sections in transverse momentum and rapidity for B0 mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The dataset used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 inverse picobarns. The production cross section is measured from B0 meson decays reconstructed in the exclusive final state J/Psi K-short, with the subsequent decays J/Psi to mu^+ mu^- and K-short to pi^+ pi^-. The total cross section for pt(B0) > 5 GeV and y(B0) < 2.2 is measured to be 33.2 +/- 2.5 +/- 3.5 microbarns, where the first uncertainty is statistical and the second is systematic.
Total integrated cross section in the given kinematic range. The (sys) error includes all the systematic uncertainties.
Measured differential cross section as a function of the transverse momentum of the B0 particle.
Measured differential cross section as a function of the rapidity of the B0 particle.
We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.
The measured 3-jet differential cross section for |y|<0.8 and pT>40 GeV.
The measured 3-jet differential cross section for |y|<1.6 and pT>40 GeV.
The measured 3-jet differential cross section for |y|<2.4 and pT>40 GeV.
Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at sqrt(s) = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV (6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.
Normalized dijet angular distribution for the dijet mass range > 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1800 to 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1400 to 1800 GeV.