Measurements of pp→μ+μ−+X at s=44 and 62 GeV are compared. The data are taken under identical conditions utilizing clean proton-proton collisions from the CERN intersecting storage rings and confirm scaling to 5%. The observed μ+μ− yield is a factor of 1.6±0.2 larger than estimated from a simple parton model but is consistent with QCD. The pT dependence of the muon pairs agrees well with expectations from QCD.
No description provided.
By using three different c.m. energies in pp interactions,\(\sqrt s \), 44, 62 GeV, it is shown that the average charged-particle multiplicity <nch> sclaes with\(\sqrt s \) once the correct hadronic energy available for multiparticle production,Ehad, is used as basic parameter. The pp data, analysed in this way, are compared with e+e− data at equivalent energies. The agreement is very satisfactory.
WITH SQRT(S) OF 30 GEV.
WITH SQRT(S) OF 44 GEV.
WITH SQRT(S) OF 62 GEV.
The average charged multiplicity in proton-proton interactions has been studied at √ s = 62 GeV. A very good agreement with the average charged multiplicity measured in e + e − annihilation at different energies is obtained by redefining, in p-p, the correct energies available for particle production. This means that a p-p collision at √ s = 62 GeV does in fact correspond to a large range of effective hadronic energies available for particle production.
AVERAGE CHARGED MULTIPLICITY AS A FUNCTION OF HADRONIC ENERGY WHERE E(NAME=HAD) IS THE INCIDENT PROTON ENERGY (COLLIDING BEAM ENERGY) MINUS THE LEADING PROTON ENERGY.
We present the B( d θ d y ) y=0 for J /ψ over thefull range of ISR energies and for ϒ at √ s = 53 and 63 GeV, using their dielectron decay mode. The average transverse momentum and the decay angles are presented. We found ( p T ) = 1.75 ± 0.19 GeV for ϒ, being higher than ( p T ) of the continuum and rising with √s. We present a comparison of the cross sections of J/ψ and ϒ with those of the continuum, at the same masses, as a function of √s. An appropriate scaling of the hadronic production of quark-antiquark narrow bound states involving ⋉, J/ψ, ψ′, ϒ, and ϒ′ is presented as a function of m /√ s at y = 0, and is compared with Drell-Yan scaling.
No description provided.
UPSILON HERE = UPSILON+UPSILON PRIME.
We report on the experimental results obtained at the ISR for the η particle production at 90° and √ s = 30.6 and 53.2 GeV. We determine the invariant cross section and the p t distribution in the interval 1 ⩽ p t ⩽ 5 GeV/ c . We find that the p t distribution has the same shape of the π 0 production and differ from it by a constant factor R 90° = 0.5 ± 0.07.
No description provided.
The inclusive production of ϱ 0 mesons in pp collisions has been measured at five c.m. energies from √ s = 23.6 to 63.0 GeV. The cross sections and the production spectra as a function of transverse momentum and rapidity are discussed.
No description provided.
No description provided.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
.
TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.
TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.
We report on a study of the charge-exchange reaction pp → nΔ ++ (1232) at the CERN intersecting storage rings (ISR) in the energy range √ s = 23 to 53 GeV. From our analysis of the energy dependence of the total cross-section, of the differential cross-section d σ /d t and of the decay angular distributions we find evidence that pion exchange is dominant up to √ s = 23 GeV and that ( ϱ +A 2 ) exchange dominates the reaction for √ s ⩾ 30 GeV, as described by simple Regge-pole models.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
No description provided.
Results are reported for the invariant differential cross-section of charged pions produced at x = 0 in proton-proton collisions at the CERN ISR. The range covered is 40 to 400 MeV/c in transverse momentum and 23 to 63 GeV in collision energy. The inclusive cross-section for π + and π − are increasing by 36 ± 2% and 41 ± 2%, respectively over the ISR energy range with a somewhat stronger increase at the lowest transverse momenta. The transverse momentum distribution is well described by an exponential in the transverse energy.
No description provided.
No description provided.
No description provided.