A measurement of the forward-backward asymmetry (A[FB]) of Drell-Yan lepton pairs in pp collisions at sqrt(s) = 7 TeV is presented. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 5 inverse femtobarns. The asymmetry is measured as a function of dilepton mass and rapidity in the dielectron and dimuon channels. Combined results from the two channels are also presented. The A[FB] measurement in the dimuon channel and the combination of the two channels are the first such results obtained at a hadron collider. The measured asymmetries are consistent with the standard model predictions.
The unfolded mu+mu- measurement of AFB at the Born level in four rapidity bins. The errors on data are statistical only.
The unfolded e+e- measurement of AFB at the Born level in four rapidity bins. The errors on data are statistical only.
Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).
Measurements of the normalized rapidity (y) and transverse momentum (qT) distributions of Drell-Yan muon and electron pairs in the Z-boson mass region (60<M(ll)<120 GeV) are reported. The results are obtained using a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The distributions are measured over the ranges |y|<3.5 and qT<600 GeV and compared with QCD calculations using recent parton distribution functions. Overall agreement is observed between the models and data for the rapidity distribution, while no single model describes the Z transverse-momentum distribution over the full range.
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the absolute value of rapidity of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the transverse momentum of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Covariance matrix values between the rapidity bins for the muons data sample.
The Drell-Yan differential cross section is measured in pp collisions at sqrt(s) = 7 TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15-600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions.
The DY spectrum normalized to the Z0 region and to the mass bin widths.
The DY spectrum normalized to the Z0 region for the dimuon channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
The DY spectrum normalized to the Z0 region for the dielectron channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.
The measured PHI* distributions for the dielectron events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
The measured PHI* distributions for the dimuon events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
We present a new measurement of the Z/gamma* transverse momentum distribution in the range 0 - 330GeV, in proton-antiproton collisions at sqrt{s}=1.96 TeV. The measurement uses 0.97 fb-1 of integrated luminosity recorded by the D0 experiment and is the first using the Z/gamma*->mu+mu- + X channel at this center-of-mass energy. This is also the first measurement of the Z/gamma* transverse momentum distribution that presents the result at the level of particles entering the detector, minimizing dependence on theoretical models. As any momentum of the Z/gamma* in the plane transverse to the incoming beams must be balanced by some recoiling system, primarily the result of QCD radiation in the initial state, this variable is an excellent probe of the underlying process. Tests of the predictions of QCD calculations and current event generators show they have varied success in describing the data. Using this measurement as an input to theoretical predictions will allow for a better description of hadron collider data and hence it will increase experimental sensitivity to rare signals.
Normalized differential cross section.
Absolute differential cross section produced by multiplying by the measuredtotal cross section (118 pb).
We present a study of eegamma and mumugamma events using over 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider at sqrt(s) = 1.96 TeV. Having observed 453 (515) candidates in the eegamma (mumugamma) final state, we measure the Zgamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta R(lgamma} > 0.7, and invariant mass of the di-lepton pair M(ll) > 30 GeV, to be 4.96 +/- 0.30(stat. + syst.) +/- 0.30(lumi.) pb, in agreement with the standard model prediction of 4.74 +/- 0.22 pb. This is the most precise Zgamma cross section measurement at a hadron collider. We set limits on anomalous trilinear Zgammagamma and ZZgamma gauge boson couplings of -0.085 < h(30)^(gamma) < 0.084, -0.0053 < h(40)^(gamma) < 0.0054 and -0.083 < h(30)^(Z) < 0.082, -0.0053 < h(40)^(Z) < 0.0054 at the 95% C.L. for the form-factor scale Lambda = 1.2 TeV.
Measured cross section for Z0 GAMMA production. Error contains both statistics and systematics (excluding luminosity uncertainty).
We present a measurement of Z0 boson and Drell-Yan production cross sections in p¯p collisions at s=1.8TeV using a sample of 107pb−1 accumulated by the Collider Detector at Fermilab. The Drell-Yan cross section is measured in the mass range of Mμμ>40GeV/c2. We compare the measurements with the predictions of quantum chromodynamics in both leading order and next-to-leading order, incorporating the recent parton distribution functions. The measurements are consistent with the standard model expectations.
The mesured Z0 cross sections for the two running periods and combined.
The mesured Z0 cross section, times the branching ratio Z0 --> MU+ MU- (3.362 PCT) for the two running periods and combined.
The mesured production cross section for the combined data sets for ABS(YRAP) < 1.
The dilepton mass spectrum in pp¯→l+l−+X interactions is studied using dielectrons (ee) and dimuons (μμ) in 110pb−1 of data collected with the Collider Detector at Fermilab. The data are consistent with standard model predictions. The mass spectrum, being a probe for new physics, is examined for new interactions of quarks and leptons from a common composite structure. Assuming a contact interaction with the conventional coupling g02/4π=1, limits on chiral quark-electron and quark-muon compositeness scales in the range of 2.5 to 4.2 TeV are obtained.
Di-electron data and Standard Model event predicitions.
Di-muon data and Standard Model event predicitions.
We present measurements of correlated bb¯ cross sections, μ−μ correlations, the average B0B¯0 mixing parameter χ¯, and a limit on the CP-violating parameter εB. For these measurements, we use muon pairs from bb¯ double semileptonic decays. The data used in this analysis were taken with the Collider Detector at Fermilab and represent an integrated luminosity of 17.4±0.6 pb−1. The results concerning bb¯ production correlations are compared to predictions of next-to-leading order QCD computations.
No description provided.
Muons are from BOTTOM BOTTOMBAR decays. The common systematic uncertainties (+9.9,-7.0 PCT) of the fit and of the luminosity (+-3.6 PCT) are included in adtion to the statistical error.
Muons are from BOTTOM BOTTOMBAR decays. The common systematic uncertainties (+9.9,-7.0 PCT) of the fit and of the luminosity (+-3.6 PCT) are included in adtion to the statistical error.
We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11<M<150 GeV/c2 using dielectron and dimuon data from p¯p collisions at a center-of-mass energy of s=1.8 TeV. Our results show the 1M3 dependence that is expected from the naive Drell-Yan model. In comparison to the predictions of recent QCD calculations we find our data favor those parton distribution functions with the largest quark contributions in the x interval 0.006 to 0.03.
Dielectron differential cross section.
Dimuon differential cross section.
Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.