The correlated production of Lambda and Lambdabar baryons has been studied using 4.3 million multihadronic Zo decays recorded with the OPAL detector at LEP. Di-lambda pairs were investigated in the full data sample and for the first time also in 2-jet and 3-jet events selected with the k_t algorithm. The distributions of rapidity differences from correlated Lambda-Lambdabar pairs exhibit short-range, local correlations and prove to be a sensitive tool to test models, particularly for 2-jet events. The JETSET model describes the data best but some extra parameter tuning is needed to improve agreement with the experimental results in the rates and the rapidity spectra simultaneously. The recently developed modification of JETSET, the MOdified Popcorn Scenarium (MOPS), and also HERWIG do not give satisfactory results. This study of di-lambda production in 2- and 3-jet events supports the short-range compensation of quantum numbers.
Average multipicity of LAMBDA pairs in hadronic events.
Average multipicity of LAMBDA pairs in 2-Jet events.
Average multipicity of LAMBDA pairs in 3-Jet events.
In the Standard Model, b quarks produced in e^+e^- annihilation at the Z^0 peak have a large average longitudinal polarization of -0.94. Some fraction of this polarization is expected to be transferred to b-flavored baryons during hadronization. The average longitudinal polarization of weakly decaying b baryons, <P_L^{\Lambda_b}>, is measured in approximately 4.3 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995 at LEP. Those b baryons that decay semileptonically and produce a \Lambda baryon are identified through the correlation of the baryon number of the \Lambda and the electric charge of the lepton. In this semileptonic decay, the ratio of the neutrino energy to the lepton energy is a sensitive polarization observable. The neutrino energy is estimated using missing energy measurements. From a fit to the distribution of this ratio, the value <P_L^{\Lambda_b}> = -0.56^{+0.20}_{-0.13} +/- 0.09 is obtained, where the first error is statistical and the second systematic.
Charge conjugate states are included.
In the process e+e- to hadrons, one of the effects of gluon emission is to modify the 1+cos(theta)**2 form of the angular distribution of the thrust axis, an effect which may be quantified by the longitudinal cross-section. Using the OPAL detector at LEP, we have determined the longitudinal to total cross-section ratio to be 0.0127+-0.0016+-0.0013 at the parton level, in good agreement with the expectation of QCD computed to Order(alpha_s**2) Comparisions at the hadron level with Monte Carlo models are presented. The dependence of the longitudinal cross-section on the value of thrust has also been studied, and provides a new test of QCD.
Values of SIG(C=L) integrated over all Thrust.
Measured values of the differential cross section, and the corresponding ratio of longitudinal to total cross sections, corrected to the hadron level.
Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.
Fragmentation function for 'uds-quark' events.
Fragmentation function for 'c-quark' events.
Fragmentation function for 'b-quark' events.
The inclusive production rates and differential cross-sections of photons and mesons with a final state containing photons have been measured with the OPAL detector at LEP. The light mesons covered by the measurements are the \pi^0, \eta, \rho(770)+-, \omega(782), \eta'(958) and a_0(980)+-. The particle multiplicities per hadronic Z^0 decay, extrapolated to the full energy range, are: <n_\gamma> = 20.97 +/- 0.02 +/- 1.15, <n_\pi^0> = 9.55 +/- 0.06 +/- 0.75, <n_\eta> = 0.97 +/- 0.03 +/- 0.11, <n_\rho^+-> = 2.40 +/- 0.06 +/- 0.43, <n_\omega> = 1.04 +/- 0.04 +/- 0.14, <n_\eta> = 0.14 +/- 0.01 +/- 0.02, <n_a_0+-> = 0.27 +/- 0.04 +/- 0.10. where the first errors are statistical and the second systematic. In general, the results are in agreement with the predictions of the JETSET and HERWIG Monte Carlo models.
Particle multiplicities per hadronic decay extrapolated to the full energy range.
Photon fragmentation function.
Photon fragmentation function.
The production of K^0_S mesons and Lambda baryons in quark and gluon jets has been investigated using two complementary techniques. In the first approach, which provides high statistical accuracy, jets were selected using different jet finding algorithms and ordered according to their energy. Production rates were determined taking into account the dependences of quark and gluon compositions as a function of jet energy as predicted by Monte Carlo models. Selecting three-jet events with the k_perp (Durham) jet finder (y_cut = 0.005), the ratios of K^0_S and Lambda production rates in gluon and quark jets relative to the mean charged particle multiplicity were found to be 1.10 +/- 0.02 +/- 0.02 and 1.41 +/- 0.04 +/- 0.04, respectively, where the first uncertainty is statistical and the second is systematic. In the second approach, a new method of identifying quark jets based on the collimation of energy flow around the jet axis is introduced and was used to anti-tag gluon jets in symmetric (Y-shaped) three-jet events. Using the cone jet finding algorithm with a cone size of 30 degrees, the ratios of relative production rates in gluon and quark jets were determined to be 0.94 +/- 0.07 +/- 0.07 for K^0_S and 1.18 +/- 0.10 +/- 0.17 for Lambda. The results of both analyses are compared to the predictions of Monte Carlo models.
Ratios of relative yields.
Ratios of absolute rates.