The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.
Average number of charged particles as a function of the relative azimuthal angle between the individual charged particle and the overall leading jet angle.
Average scalar PT sum of charged particles as a function of the relative azimuthal angle between the individual charged particle for 3 different lower limits of the leading jet PT. and the overall jet angle.
The average number of toward(DPHI < 60 DEG), transverse (DPHI 60 TO 120 DEG) and away (DPHI > 120 DEG) charged particles as a function of the PT of the leading charged jet. The data in this table are from the Min-Bias events.
The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.
Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.
Average PT inside the max and min cone for cm energy 1800 GeV.
Data points read from plot.
Data points read from plot.
The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.
The integrated cross section for J/PSI --> MU+ MU- decay.
Cross section as a function of PT. Statistical errors only.
We have measured the ratio of prompt production rates of the charmonium states χc1 and χc2 in 110pb−1 of pp¯ collisions at s=1.8TeV. The photon from their decay into J/ψγ is reconstructed through conversion into e+e− pairs. The energy resolution this technique provides makes the resolution of the two states possible. We find the ratio of production cross sections σχc2σχc1=0.96±0.27(stat)±0.11(syst) for events with pT(J/ψ)>4.0GeV/c, |η(J/ψ)|<0.6, and pT(γ)>1.0GeV/c.
No description provided.
Inclusive particle production cross-sections have been measured at the\(Sp\bar pS\) collider using the UA2 detector in various ranges of transverse momentum (PT) and pseudo-rapidity (η). Cross-section measurements are presented forπ0 production (PT≦15 GeV/c, |η|≦0.85 andPT≦40 GeV/c, 1.0≦|η|≦1.8), for η meson production (3≦PT≦6 GeV/c, |η|≦0.85) and for charged particle production (PT≦10 GeV/c, 1.0≦|η|≦1.8). Results are compared with the predictions of QCD calculations.
No description provided.
No description provided.
No description provided.
The production of electrons with very high transverse momentum has been studied in the UA2 experiment at the CERN\(\bar pp\) collider (\(\sqrt s\)=540 GeV). From a sample of events containing an electron candidate withpT>15 GeV/c, we extract a clear signal resulting from the production of the charged intermediate vector bosonW±, which subsequently decays into an electron and a neutrino. We study theW production and decay properties. Further-more, we refine our results on the production and decay of the neutral vector bosonZ0. Finally, we compare the experimental results to the predictions of the standard model of the unified electro-weak theory.
No description provided.
A measurement of the direct production of photons with high transverse momentum from\(\bar pp\) collisions at\(\sqrt s= 630\) GeV is presented. The structure of events containing a high transverse momentum photon is studied. The results support predictions from QCD theory.
The last data point is an average over the interval 60-100 GeV in which 5 events are found.
No description provided.
No description provided.
The UA2 experiment, running at the CERN SPS\(\bar pp\) Collider, has performed a study of events containing three hard jets in the final state. The angular distributions of the three jets show evidence for gluon bremsstrahlung, in good agreement with a QCD model to leading order in the strong coupling constant αs. The yield of three-jet events relative to that of two-jet events provides a measure of the strong coupling constant: ;3K3/K2=0.23±0.01±0.04, whereK2 andK3 represent the contributions arising from higher order corrections in α3 to the two- and three-jet exclusive cross-sections. A detailed discussion of the systematic and theoretical uncertainties is given.
No description provided.