A search is presented for direct top-squark pair production in final states with two leptons (electrons or muons) of opposite charge using 20.3fb-1 of pp collision data at sqrt(s)=8TeV, collected by the ATLAS experiment at the Large Hadron Collider in 2012. No excess over the Standard Model expectation is found. The results are interpreted under the separate assumptions (i) that the top squark decays to a b-quark in addition to an on-shell chargino whose decay occurs via a real or virtual W boson, or (ii) that the top squark decays to a t-quark and the lightest neutralino. A top squark with a mass between 150 GeV and 445 GeV decaying to a b-quark and an on-shell chargino is excluded at 95% confidence level for a top squark mass equal to the chargino mass plus 10 GeV, in the case of a 1 GeV lightest neutralino. Top squarks with masses between 215 (90) GeV and 530 (170) GeV decaying to an on-shell (off-shell) t-quark and a neutralino are excluded at 95% confidence level for a 1 GeV neutralino.
Distribution of mT2 for events passing all the signal candidate selection requirements, except that on mT2 of the L90 and L120 selections, for SF events.
Distribution of mT2 for events passing all the signal candidate selection requirements, except that on mT2 of the L90 and L120 selections, for DF events.
Distribution of mT2 for events passing all the signal candidate selection requirements, except that on mT2 of the L100 selection, for SF events.
We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.
The rate of antideuteron production from the decay of UPSILON(3S).
The rate of antideuteron production from the decay of UPSILON(2S).
The rate of antideuteron production from the decay of UPSILON(1S).
(abridged for arXiv) We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around $\ell\sim80$. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of $\approx300\mu\mathrm{K}_\mathrm{CMB}\sqrt{s}$. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes $Q$ and $U$. We find an excess of $B$-mode power over the base lensed-LCDM expectation in the range $30< \ell< 150$, inconsistent with the null hypothesis at a significance of $> 5\sigma$. Through jackknife tests and simulations we show that systematic contamination is much smaller than the observed excess. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power $\sim(5-10)\times$ smaller than the observed excess signal. However, these models are not sufficiently constrained to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed and its spectral index is found to be consistent with that of the CMB, disfavoring dust at $1.7\sigma$. The observed $B$-mode power spectrum is well fit by a lensed-LCDM + tensor theoretical model with tensor-to-scalar ratio $r=0.20^{+0.07}_{-0.05}$, with $r=0$ disfavored at $7.0\sigma$. Accounting for the contribution of foreground dust will shift this value downward by an amount which will be better constrained with upcoming data sets.
BICEP2 TT, TE, EE, BB, TB, and EB bandpowers, ell*(ell+1)*C(ell)/(2*PI), and uncertainties, corresponding to Figure 2. Uncertainties are statistical only, the standard deviation of the constrained lensed-LambdaCDM+noise simulations, and are calculated as the square root of diagonal elements of the bandpower covariance matrix. The nature of the simulations constrains T to match the observed sky, thus TT, TE, and TB uncertainties do not include appropriate sample variance, and sample variance for a tensor BB signal is not included either. The calibration procedure uses TB and EB to constrain the polarization angle, thus TB and EB cannot be used to measure astrophysical polarization rotation.
Likelihood for the tensor-to-scalar ratio, r, derived from the BICEP2 BB spectrum, corresponding to the black curve from the middle panel of Figure 10, and calculated via the "direct likelihood" method described in Section 11.1.
Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at $\sqrt{s}$ = 8 TeV in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either $W \to e\nu, \mu\nu$ or $Z \to e^+ e^-, \mu^+ \mu^-$, or $\nu\bar{\nu})$. The results are based on data corresponding to an integrated luminosity of 18.9 inverse-femtobarns collected with the CMS detector at the Large Hadron Collider. The measured cross sections, $\sigma(pp \to WZ)$ = 30.7 $\pm$ 9.3 (stat.) $\pm$ 7.1 (syst.) $\pm$ 4.1 (th.) $\pm$ 1.0 (lum.) pb and $\sigma(pp \to ZZ)$ = 6.5 $\pm$ 1.7 (stat.) $\pm$ 1.0 (syst.) $\pm$ 0.9 (th.) $\pm$ 0.2 (lum.) pb, are consistent with next-to-leading order quantum chromodynamics calculations.
The cross section for inclusive WZ production for the mass range 60 < M(Z) < 120 GeV.
The cross section for inclusive ZZ production for the mass range 60 < M(Z) < 120 GeV.
The cross section for inclusive WZ production in the region defined by 60 < M(Z) < 120 GeV and PT(W) > 100 GeV.
A measurement of event-plane correlations involving two or three event planes of different order is presented as a function of centrality for 7 ub-1 Pb+Pb collision data at sqrt(s_NN)=2.76 TeV, recorded by the ATLAS experiment at the LHC. Fourteen correlators are measured using a standard event-plane method and a scalar-product method, and the latter method is found to give a systematically larger correlation signal. Several different trends in the centrality dependence of these correlators are observed. These trends are not reproduced by predictions based on the Glauber model, which includes only the correlations from the collision geometry in the initial state. Calculations that include the final-state collective dynamics are able to describe qualitatively, and in some cases also quantitatively, the centrality dependence of the measured correlators. These observations suggest that both the fluctuations in the initial geometry and non-linear mixing between different harmonics in the final state are important for creating these correlations in momentum space.
Two-plane EP correlation data from SP method and EP method.
Two-plane EP correlation from Glauber model from SP method and EP method.
Two-plane EP correlation data from SP method and EP method.
A search for the direct production of charginos and neutralinos in final states with three leptons and missing transverse momentum is presented. The analysis is based on 20.3 fb-1 of sqrt(s) = 8 TeV proton--proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations and limits are set in R-parity-conserving phenomenological Minimal Supersymmetric Standard Models and in simplified supersymmetric models, significantly extending previous results. For simplified supersymmetric models of direct chargino ($\tilde\chi^\pm_1$) and next-to-lightest neutralino ($\tilde{\chi}_2^0$) production with decays to lightest neutralino ($\tilde{\chi}_1^0$) via either all three generations of sleptons, staus only, gauge bosons, or Higgs bosons, $\tilde\chi^\pm_1$ and $\tilde{\chi}_2^0$ masses are excluded up to 700 GeV, 380 GeV, 345 GeV, or 148 GeV respectively, for a massless $\tilde{\chi}_1^0$.
Number of expected and observed events in the validation region VR0taub.
For events in the low-ETmiss validation region, the MT distribution in VR0taunoZa.
For events in the low-ETmiss validation region, the MT distribution in VR0tauZa.
The production of a W boson in association with a single charm quark is studied using 4.6 fb^-1 of pp collision data at sqrt(s)=7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96 +0.26 -0.30 at Q^2=1.9 GeV^2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W^+ + bar{c})/sigma(W^- + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-bar{s} quark asymmetry.
Measured integrated cross sections of the production of a W boson with a single c-jet, a D meson or a D* meson times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.
Measured integrated cross section ratios of the production of W+ and W- bosons associated with a single c-jet, a D meson or a D* meson in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.
Measured differential cross sections as function of the lepton pseudo-rapidity of the production of a W boson with a single c-jet times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. The cross sections are defined for OS-SS events.
A measurement is presented of the phi to K+K- production cross section at sqrt(s) = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 mub-1, collected with the ATLAS experiment at the LHC. Selection of phi(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, pTphi, and rapidity, |yphi|, of the phi(1020) meson in the fiducial region 500 < pTphi< 1200 MeV, |yphi| < 0.8, kaon pTK> 230 MeV and kaon momentum pK< 800 MeV.The integrated phi(1020)-meson production cross section in this fiducial range is measured to be s(phi K+K-) = 570 pm 8 (stat) pm 66 (syst) pm 20 (lumi) mub.
The differential PHI(1020) meson production cross section measured in the fiducial region as a function of the PHI(1020) transverse momentum.
The differential PHI(1020) meson production cross section measured in the fiducial region as a function of the PHI(1020) rapidity.
The integrated PHI(1020) meson production cross section in the fiducial region.
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.
PI0 ASYM(LL) measurements from 2005.
PI0 ASYM(LL) measurements from 2006.
PI0 ASYM(LL) measurements from 2009.
The t t-bar charge asymmetry in proton-proton collisions at sqrt(s) = 7 TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 inverse femtobarns, collected by the CMS experiment at the LHC. The t t-bar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be Ac = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and Ac[lep] = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system. All measurements are consistent with the expectations of the standard model.
The unfolded ASYMC and ASYMC(LEPTON) measurements.
Measurements of the unfolded ASYMC(LEPTON) values in bins of M(TOP TOPBAR).
Measurements of the unfolded ASYMC(LEPTON) values in bins of ABS(YRAP(TOP TOPBAR)).