A measurement of the b-quark mass from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 18 (2000) 1-13, 2000.
Inspire Record 531468 DOI 10.17182/hepdata.49909

Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.

1 data table

No description provided.


QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

A measurement of the QCD colour factors and a limit on the light gluino.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Z.Phys.C 76 (1997) 1-14, 1997.
Inspire Record 440051 DOI 10.17182/hepdata.34162

Using data collected from 1992 to 1995 with the ALEPH detector at LEP, a measurement of the colour factor ratios CA/CF and TF /CF and the strong coupling constant αs = CFαs(MZ)/(2π) has been performed by fitting theoretical predictions simultaneously to the measured differential two-jet rate and angular distributions in four-jet events. The result is found to be in excellent agreement with QCD, {fx4-1} Fixing CA/CF and TF/CF to the QCD values permits a determination of αs(MZ) and ηf, the number of active flavours. With this measurement the existence of a gluino with mass below 6.3 GeV/c2 is excluded at 95% confidence level.

3 data tables

Fit A: using all kinematical distributions. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.

Fit B: using all kinematical distributions, but QCD magnitudes for color factors are used: FA(DEF=NC/CF)) = 2.25 and TF/CF = 0.375. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.

Fit C: the QCD magnitudes for color factors and NF = 5 are used.


Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

23 data tables

Determination of alpha_s.

Multiplicity and high moments.

Tmajor distribution.

More…

Test of the flavor independence of alpha-s

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 355 (1995) 381-393, 1995.
Inspire Record 393416 DOI 10.17182/hepdata.48177

Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.

1 data table

No description provided.


A Search for jet handedness in hadronic Z0 decays

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.Lett. 74 (1995) 1512-1516, 1995.
Inspire Record 378343 DOI 10.17182/hepdata.19666

We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}

1 data table

Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.


Determination of alpha-s using the next-to-leading log approximation of QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 21-34, 1993.
Inspire Record 354909 DOI 10.17182/hepdata.50115

A new measurement of αs is obtained from the distributions in thrust, heavy jet mass, energy-energy correlation and two recently introduced jet broadening variables following a method proposed by Cata

7 data tables

Thrust distribution corrected for detector acceptance and initial state photon radiation.

Heavy jet mass (RHO) distribution (THRUST definition) corrected for detect or acceptance and initial state photon radiation.

Heavy jet mass (RHOM) distribution (MASS definition) corrected for detectoracceptance and initial state photon radiation.

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

41 data tables

Sphericity distribution.

Sphericity distribution.

Aplanarity distribution.

More…

Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.