Antideuteron and anti-helium-3 production in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 262301, 2001.
Inspire Record 561876 DOI 10.17182/hepdata.102316

The first measurements of light antinucleus production in Au+Au collisions at RHIC are reported. The observed production rates for antideuterons and antihelions are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at SPS energy. These analyses also indicate that the antihelion freeze-out volume is smaller than the antideuteron freeze-out volume.

3 data tables

Coalescence parameters $B_2$ and $B_3$ in Au+Au collisions at 130 GeV.

Invariant yields of $\overline{d}$ and $\overline{p}$. Systematic errors are estimated to be 15%.

Invariant yields of $^3\overline{\mathrm{He}}$ and $\overline{p}$. Systematic errors are estimated to be 15%.


Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 032301, 2003.
Inspire Record 588226 DOI 10.17182/hepdata.98579

Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T<2$ GeV/c is consistent with collective hydrodynamical flow calculations. At $\pT>3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.

4 data tables

$v_{2}$($p_{T}$) for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}%$.

$v_{2}$($p_{T}$) for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^{g}/dy$ = 1000 (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).

High $p_{T}$ azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta\eta|$ < 0.5 (solid circles) and scaled correlation function for 0.5 < $|\Delta\eta|$ < 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).

More…

Azimuthal anisotropy of K0(S) and Lambda + anti-Lambda production at mid-rapidity from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 127 (2021) 089901, 2021.
Inspire Record 587154 DOI 10.17182/hepdata.102318

We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.

8 data tables

$v_2$ of $K_s^0$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $K_s^0$ as a function of $p_T$ for 11-45% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $\Lambda+\bar{\Lambda}$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

More…

Beam-Energy Dependence of the Directed Flow of Deuterons in Au+Au Collisions

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.C 102 (2020) 044906, 2020.
Inspire Record 1806121 DOI 10.17182/hepdata.95544

We present a measurement of the first-order azimuthal anisotropy, $v_1(y)$, of deuterons from Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV recorded with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The energy dependence of the $v_1(y)$ slope, $dv_{1}/dy|_{y=0}$, for deuterons, where $y$ is the rapidity, is extracted for semi-central collisions (10-40\% centrality) and compared to that of protons. While the $v_1(y)$ slopes of protons are generally negative for $\sqrt{s_{NN}} >$ 10 GeV, those for deuterons are consistent with zero, a strong enhancement of the $v_1(y)$ slope of deuterons is seen at the lowest collision energy (the largest baryon density) at $\sqrt{s_{NN}} =$ 7.7 GeV. In addition, we report the transverse momentum dependence of $v_1$ for protons and deuterons. The experimental results are compared with transport and coalescence models.

6 data tables

The 1st-order event plane ($\Psi_{1}$) resolution as a function of centrality of Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The $\Psi_{1}$ is reconstructed with the BBC detectors and its resolution is estimated by the correlation of sub-$\Psi_{1}$ from east BBC and west BBC. Data presented later (10-40\% centrality) is indicated by the dashed-line box.

Rapidity dependene of $v_1$ for protons(open squares) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only

Rapidity dependene of $v_1$ for deuterons(solid circles) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only

More…

Centrality dependence of high p(T) hadron suppression in Au+Au collisions at s**(NN)(1/2) = 130-GeV

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 202301, 2002.
Inspire Record 588808 DOI 10.17182/hepdata.95885

Inclusive transverse momentum distributions of charged hadrons within 0.2<pT<6.0 GeV/c have been measured over a broad range of centrality for Au+Au collisions at sqrt(sNN)=130 GeV. Hadron yields are suppressed at high pT in central collisions relative to peripheral collisions and to a nucleon-nucleon reference scaled for collision geometry. Peripheral collisions are not suppressed relative to the nucleon-nucleon reference. The suppression varies continuously at intermediate centralities. The results indicate significant nuclear medium effects on high pT hadron production in heavy ion collisions at high energy.

3 data tables

Inclusive $p_T$ distributions of ($h^+ + h^−)/2$. Non-central bins are scaled down by the indicated factors. The combined statistical and systematic errors are shown. Curves are fits to Eq. (2). Hash marks at the top indicate bin boundaries for $p_T>1.5$ GeV/c.

Ratio of charged hadron yields within $|\eta| < 0.5$ for central over peripheral collisions, normalized to $\langle Nbin\rangle$.

$R_{AA}$($p_T$) for various centrality bins, for Au+Au relative to an NN reference spectrum. Error bars are described in the text. Errors between different $p_T$ and centrality bins are highly correlated.


Coherent rho0 production in ultra-peripheral heavy ion collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 272302, 2002.
Inspire Record 588142 DOI 10.17182/hepdata.102319

The STAR collaboration reports the first observation of exclusive rho^0 photo-production, AuAu->AuAu rho^0, and rho^0 production accompanied by mutual nuclear Coulomb excitation, AuAu->Au*Au*rho^0, in ultra-peripheral heavy-ion collisions. The rho^0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt(s_NN)=130GeV agree with theoretical predictions treating rho^0 production and Coulomb excitation as independent processes.

3 data tables

Differential cross section $d\sigma(\gamma Au \rightarrow \rho Au)/dt$ of $\rho^0$ candidates

Differential cross section $d\sigma/dM_{\pi\pi}$ for two-track (xn,xn) events with pair $p_T<150$ MeV/$c$

Total background in the differential cross section $d\sigma/dM_{\pi\pi}$


Differential measurements of jet substructure and partonic energy loss in Au+Au collisions at $\sqrt {S_{NN}}$ =200 GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 105 (2022) 044906, 2022.
Inspire Record 1925052 DOI 10.17182/hepdata.113875

The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn $= 200$ GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg. We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance ($A_{\rm{J}}$) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range $0.1 < $\tsj $ < 0.3$, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.

54 data tables

$z_{g}$ for HardCore Trigger jets in AuAu Data anti-kT R$=$0.4

$z_{g}$ for HardCore Trigger jets in pp$+$AuAu Data anti-kT R$=$0.4

$z_{g}$ for Matched Trigger jets in AuAu Data anti-kT R$=$0.4

More…

Disappearance of back-to-back high p(T) hadron correlations in central Au+Au collisions at s(NN)**(1/2) = 200-GeV

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 082302, 2003.
Inspire Record 600652 DOI 10.17182/hepdata.101748

Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.

9 data tables

Azimuthal distributions of opposite-sign pairs in p+p collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

Azimuthal distributions of same-sign pairs in p+p collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

Azimuthal distributions of same-sign and opposite-sign pairs in minimum bias and background-subtracted 0-10% central Au+Au collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

More…

Disappearance of partonic collectivity in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 137003, 2022.
Inspire Record 1897294 DOI 10.17182/hepdata.110656

We report on the measurements of directed flow $v_1$ and elliptic flow $v_2$ for hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{S}^0$, $p$, $\phi$, $\Lambda$ and $\Xi^{-}$) from Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV and $v_{2}$ for ($\pi^{\pm}$, $K^{\pm}$, $p$ and $\overline{p}$) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the number-of-constituent-quark (NCQ) scaling holds, at 3 GeV the $v_{2}$ at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the $v_1$ slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative $v_2$ and positive $v_1$ slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.

32 data tables

Event plane resolution as a function of collision centrality from Au+Au collisions at $\sqrt{s_{NN}}$=3 (a), 27 and 54.4 GeV (b). In case of the 3 GeV collisions, $\Psi_{1}$ is used to determine the event plane resolutions for the first and second harmonic coefficients shown as $R_{11}$ and $R_{12}$ in left panel. In the 27 and 54.4 GeV collisions, $\Psi_{2}$ is used to evaluate the second order event plane resolution, see right panel. In all cases, the statistic uncertainties are smaller than symbol sizes.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

More…

Elliptic flow from two- and four-particle correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 66 (2002) 034904, 2002.
Inspire Record 587825 DOI 10.17182/hepdata.98926

Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.

30 data tables

Correlation between the event plane angles determined from pairs of subevents partitioned randomly (circles), partitioned with opposite signs of pseudorapidity (squares) and partitioned with opposite signs of charge (crosses). The correlation is plotted as a function of centrality, namely, charged particle multiplicity $n_{ch}$ divided by the maximum observed charged multiplicity, $n_{max}$.

The event plane resolution for full events as a function of centrality, using randomly partitioned subevents with (circles) and without (triangles) $p_{t}$ weight.

Elliptic flow signal $v_{2}$ as a function of centrality, from study of the correlation between particle pairs consisting of randomly chosen particles (circles), particles with opposite signs of charge (crosses), particles with the same signs of charge (triangles), and particles with opposite signs of pseudorapidity (squares).

More…