Approximately 1200 π−-proton interactions in a liquid hydrogen bubble chamber were studied to obtain the elastic differential cross section and inelastic partial cross sections at 950±20 Mev mean laboratory energy. Relative cross sections were converted to absolute values using the total cross section obtained by Cool and co-workers with counters. The differential cross section is inconsistent with a resonance of definite total angular momentum and parity and can be fitted by a superposition of partial waves of angular momenta up to 3ℏ without spin-flip scattering. In the center-of-mass system, 30% of the pions scatter beyond a broad minimum of the cross section at 75°.
No description provided.
Differential cross sections for Compton scattering by the proton have been measured in the energy interval between 200 and 500 MeV at scattering angles of θ cms = 75° and θ cms = 90° using the CATS, the CATS/TRAJAN, and the COPP setups with the Glasgow Tagger at MAMI (Mainz). The data are compared with predictions from dispersion theory using photo-meson amplitudes from the recent VPI solution SM95. The experiment and the theoretical procedure are described in detail. It is found that the experiment and predictions are in agreement as far as the energy dependence of the differential cross sections in the Δ-range is concerned. However, there is evidence that a scaling down of the resonance part of the M 1+ 3 2 photo-meson amplitude by (2.8 ± 0.9)% is required in comparison with the VPI analysis. The deduced value of the M 1+ 3 2 - photoproduction amplitude at the resonance energy of 320 MeV is: |M 1+ 3 2 | = (39.6 ± 0.4) × 10 −3 m π + −1 .
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have measured dijet angular distributions at √s =1.8 TeV with the Collider Detector at Fermilab and the Tevatron p¯p Collider and find agreement with leading-order QCD. By comparing the distribution for the highest dijet invariant masses with the prediction of a model of quark compositeness, we set a lower limit on the associated scale parameter Λc at 330 GeV (95% C.L.).
Numerical values read from figure in preprint.
None
No description provided.
Total cross section (4PIA0). Errors contain systematics. Calculated using data from De Sanctis et al., PR C34(86)413, combined with this work.
None
No description provided.
Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.
No description provided.
No description provided.
No description provided.
Differential cross sections for dp elastic scattering from 60° to 175° center of momentum (c.m.) were measured at 3.43, 4.50, 5.75, and 6.60 GeVc incident deuteron momentum. The measurements were made with a two-arm magnetic spectrometer, making use of multiwire proportional chamber detectors. The deuterons were accelerated at the Bevatron of the Lawrence Berkeley Laboratory. Data are compared with predictions of the baryon-pickup model and the one-pion-exchange model. The backward dip at 180° c.m. for 4.5 GeVc, predicted by Craigie and Wilkin using the one-pion-exchange model, is not observed, but reasonable fits to the momentum variation and angular distributions are found. When the data are plotted against the variable Δ of the baryon-pickup model, the s dependence is greatly reduced.
No description provided.
No description provided.
No description provided.
An investigation has been performed of some properties of Σ(1660) produced in the reaction K−p→Σ+(1660)π− at 2.87 GeV/c incident K− momentum. The decay modes observed for this state include Λ(1405)π and Σπ. The spin and parity are measured to be JP=32−. The differential cross section of the Λ(1405)π decay mode is sharply peaked in the forward direction, falling exponentially with a slope of 5.6 ± 0.7 (GeV/c)−2, while the slope for the Σ0π+ decay mode is 2.1 ± 0.4 (GeV/c)−2. The difference in the ratio of backward to total events for the two decay modes also suggests that two Σ(1660)'s exist.
No description provided.
No description provided.
None
No description provided.