Proton-proton elastic scattering has been measured at the CERN Intersecting Storage Rings in the four-momentum transfer range 0.001 ⩽… t …⩽ 0.015 GeV 2 at centre-of-mass energies of 23 and 31 GeV. The detection of Coulomb scattering and of its interference with nuclear scattering leads to the determination of the real part of the nuclear amplitude and of the total proton-proton cross section by the optical theorem.
No description provided.
No description provided.
None
BREIT-WIGNER RESONANCE FITS WITH BACKGROUND.
Proton-proton elastic scattering has been measured over the angular range 7 to 16 mrad at centre-of-mass energies of 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The results indicate that the diffraction peak has continued to shrink with increasing energy, but not as fast as suggested by the results at lower energies.
No description provided.
Results are presented on elastic scattering of 10.1 GeV/ c K − mesons on protons, based on a sample of 16 261 kinematically-fitted bubble-chamber events. The differential cross section is given over the | t |- range of 0.06 to 2.5 GeV 2 and is fitted with the expressions a e bt , A e Bt + Ct 2 and ( P e Qt + Re St ) over various intervals of t . The results are compared with those of other experiments at nearby energies. Upper limits of | α | < 0.28 and σ B < 0.4 μ b (both at a 90% confidence level) are given for the ratio of real to imaginary part of the forward-scattering amplitude and the backward-elastic-scattering cross section, respectively.
No description provided.
ERROR INCLUDES STATISTICAL ERROR AND ERROR IN TOTAL CROSS SECTION USED FOR NORMALIZATION. EXTRAPOLATION OF D(SIG)/DT TO T=0 PROVIDES ABOUT 0.5 PCT UNCERTAINTY.
NO BACKWARD EVENTS OBSERVED. LARGEST ANGLE EVENT SEEN WAS AT 64 DEG (-T = 2.33 GEV**2).
Twenty-nine proton-proton differential elastic cross sections for lab momenta p0 from 11 to 31.8 BeV/c, at four-momentum transfers squared, −t, from 2.3 to 24.4 (BeV/c)2, have been measured at the Brookhaven alternating gradient synchrotron. The circulating proton beam impinged upon a thin CH2 internal target. Both scattered protons from p−p elastic events were detected by scintillation-counter telescopes which were placed downstream from deflection magnets set at the appropriate angles to the incident beam. The angular correlation of the protons, their momenta, and the coplanarity of the events were determined by the detection system. The results show that at high momentum transfers the differential cross section, dσdt, depends strongly upon the energy; for −t=10 (BeV/c)2, the value of dσdt at p0=30 BeV/c is smaller by a factor∼1000 than at p0=10 BeV/c. At all energies, dσdt falls rapidly with increasing |t| for scattering angles up to about 65° (c.m.), while in the range from 65 to 90° the cross section falls only by a factor of about 2. The smallest cross section measured was 9×10−37 cm2 sr−1 (c.m.), at p0=31.8 BeV/c and −t=20.4 (BeV/c)2; this is about 3×10−12 of the zero-degree cross section at the same energy.
'1'. '2'.