Final data on topological cross sections are presented. Inclusive single particle distributions for the reactionsK+p→ π±X at 32 GeV/c are discussed and compared with data at lower energies. Early scaling in the fragmentation regions is confirmed, while cross sections in th central region continue to rise with energy even faster than inpp interactions. Thex-andpT-dependence of the π+/π− ratio inK+p interactions is discussed and a comparison of reactionsK+p→ π±X andK−p→ π±X at 32 GeV/c is made in the context of constituent models. We also present transverse momentum distributions, show prominent seagull effects and study how they are influenced by resonance production.
.
Antilambda production is studied inK−p interactions at 32 GeV/c. Both total and differential cross sections are presented. The inclusive\(\bar \Lambda \) production cross section amounts to 109±7 μb. A remarkable energy dependence is observed, σ(\(\bar \Lambda \)) increasing by a factor of four between 14.3 and 32 GeV/c. Thep⊥2 distribution exhibits an exponential fall-off with a slope of 3.3±0.2 (GeV/c)−2. Most of the\(\bar \Lambda \)'s are emitted in the forward hemisphere. The invariantx distribution increases between 14.3 and 32 GeV/c. Data are presented for\(\bar \Lambda \) production inK-p→Λ\(\bar \Lambda \)+XK-p→\(\bar \Lambda \)Kn+X, andK-p→\(\bar \Lambda \)p+X.
No description provided.
Data on Λ and\(\bar \Lambda \) polarization inK±p interactions at 32 GeV/c are presented. A comparison is made between the results of these two experiments as well as with the data at lower energies. The contribution of the different production mechanisms to the Λ(\(\bar \Lambda \)) polarization are discussed.
Data are presented on figures only. DATA NOT ENCODED.
No description provided.
We present final results on the inclusive production of the\(\bar K^{*0} (890)\),K*−(890),K*0(890),K*−(890),K*−(1420), and\(\bar K^{*0} (1420)\) resonances inK−p interactions at 32 GeV/c. Total cross sections and invariantx-distributions are determined. Inclusive cross sections of\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (890)\) amount to ≃4 mb each, of\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (1420)\) to ≃1 mb and ofK*0(890) to ≃0.8 mb. These values are in agreement with additive quark model predictions. All strangenessS=−1 resonances are predominantly produced in the forward hemisphere, the tensor mesons being more peripherally produced than the vector ones. The\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (890)\) density matrix elements andt-distributions are obtained. The unnatural spin-parity exchange contribution to inclusive\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (890)\) production amounts to ≳60% at |t|<0.4 GeV2 and decreases with increasing |t|. Whenever relevant, a comparison is also made with available data at other energies.
No description provided.
No description provided.
No description provided.
Inclusive cross sections and one-particle inclusive spectra are given for neutral K, Λ and Λ produced in K − p and K + p interactions at 32 GeV/ c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. Cross sections for associated production are also given, and the energy dependences of the cross sections and of the x distributions in the central and in the fragmentation regions are discussed.
No description provided.
No description provided.
Inclusive production of vector and tensor mesons is studied in a K − p experiment at 32 GeV/ c in the MIRABELLE bubble chamber. The K ∗ 0 (890) , ϱ 0 and ω cross sections are comparable, about 4 mb each. The K ∗ 0 (1420 and cross sections are also comparable, about 1 mb each. The K ∗ o ̈ + (890), Φ, K ∗ o ̈ − (1420) and f cross sections beam fragmentation; ϱ production is almost forward-backward symmetric in the c.m.s. The p T production slopes of K ∗ o ̈ − (890) and ϱ are similar, the Φ slope is shallower. Vector and tensor mesons alone are responsible for ≅50% (≅60%) of final-state pions
No description provided.
Inclusive and semi-inclusive distributions of γ's and π 0 's in the reactions K + p → γ + X and K + p → π 0 + X at 32 GeV/ c are presented and discussed. When compared to the inclusive π − production, the π 0 cross section is found to be significantly higher in low | x | and p T regions. The data are compared with other experiments and quark fusion model predictions.
No description provided.
ESTIMATED FROM GAMMA AND 2GAMMA SPECTRA.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.