Measurement of Interference Between $W$ and $Z$ Exchange in $\nu_e$ Electron Scattering

Allen, R.C. ; Chen, H.H. ; Doe, P.J. ; et al.
Phys.Rev.Lett. 64 (1990) 1330, 1990.
Inspire Record 283094 DOI 10.17182/hepdata.19968

A measurement of the reaction νe+e−→νe+e− was performed using a beam-stop source of νe. Based upon 234±35 events, we obtain a cross section of σ(νee)=[9.9±1.5(stat)±1.0(syst)]×10−42 cm2 ×[Eν (GeV)]. This reaction is mediated by the exchange of W and Z bosons and is thus sensitive to the interference between them. This interference is measured to be -1.07±0.17(stat)±0.11(syst), consistent with the destructive interference (-1.08) predicted by the standard model.

1 data table match query

No description provided.


First Observation and Cross-section Measurement of $\nu_e e^- \to \nu_e e^-$

Allen, R.C. ; Bharadwaj, V. ; Brooks, G.A. ; et al.
Phys.Rev.Lett. 55 (1985) 2401, 1986.
Inspire Record 215874 DOI 10.17182/hepdata.20326

We report the first observation and cross-section measurement of νe+e−→νe+e−. Using neutrinos of energy less than 53 MeV, we observed 63±17 events consistent with ν+e−→ν+e−, of which 51±17 events are assigned to νe+e−→νe+e−. The resulting cross section, {[8.9±3.2(statistical) ±1.5(systematic)]×10−45 cm2/MeV} Eν, agrees with standard electroweak theory, rules out constructive interference between weak charged-current and neutral-current interactions, and begins to indicate the existence of interference between these two interactions.

1 data table match query

No description provided.


Study of electron-neutrino electron elastic scattering at LAMPF

Allen, R.C. ; Chen, H.H. ; Doe, P.J. ; et al.
Phys.Rev.D 47 (1993) 11-28, 1993.
Inspire Record 33287 DOI 10.17182/hepdata.22728

Neutrino-electron elastic scattering was observed with a 15-ton fine-grained tracking calorimeter exposed to electron neutrinos from muon decay at rest. The measured νee−→νee− elastic scattering rate of 236±35 events yields the total elastic scattering cross section 10.0±1.5(stat)±0.9(syst)×10−45 cm2×[Eν (MeV)], and a model-independent measurement of the strength of the destructive interference between the charged and neutral currents, I=−1.07±0.21, that agrees well with the standard model (SM) prediction I=−1.08. The agreement between the measured electroweak parameters and SM expectations is used to place limits on neutrino properties, such as neutrino flavor-changing neutral currents and neutrino electromagnetic moments. Limits are placed on the masses of new bosons that interact with leptons: for a neutral tensor boson, MT>105 GeV; for a neutral (pseudo)scalar boson, MP,S>47 GeV; for a charged Higgs boson, Mχ+>87 GeV; and for a purely left-handed charged (neutral) vector boson, Mx>239 (119) GeV.

2 data tables match query

No description provided.

No description provided.


Measurements of electron proton elastic cross sections for 0.4-(GeV/c)**2 < Q**2 < 5.5-(GeV/c)**2.

The E94110 collaboration Christy, M.E. ; Ahmidouch, A. ; Armstrong, C.S. ; et al.
Phys.Rev.C 70 (2004) 015206, 2004.
Inspire Record 643262 DOI 10.17182/hepdata.31763

We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.

7 data tables match query

Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.

Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.

Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

More…

Rapidity gap cross sections measured with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 72 (2012) 1926, 2012.
Inspire Record 1084540 DOI 10.17182/hepdata.58497

Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.

4 data tables match query

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 200 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 400 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 600 MeV in the gap.

More…