We report a measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an $e^+e^-$ data sample corresponding to 191 $\text{fb}^{-1}$ of integrated luminosity, collected at a center-of-mass energy at or near the $\Upsilon{(4S)}$ resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in $e^+e^- \to \pi^+\pi^-\pi^0\gamma$ events, which involve a $\pi^0 \to \gamma\gamma$ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the $\omega$ and $\phi$ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62-1.80 GeV energy range yield $ a_\mu^{3\pi} = [48.91 \pm 0.23~(\mathrm{stat}) \pm 1.07~(\mathrm{syst})] \times 10^{-10} $ for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by $2.5$ standard deviations from the most precise current determination.
Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 0.62--1.05~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.
Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 1.05--3.50~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.
The statistic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix, obtained by propagating the covariance matrix in the unfolding procedure, shows the total statistical uncertainties for the cross section results.
We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from $\sqrt{s}=200$ GeV $p$+$p$ collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios $C_{4}/C_{2}$, $C_{5}/C_{1}$, and $C_{6}/C_{2}$ decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations account for the observed multiplicity dependence. In addition, the ratios $C_{5}/C_{1}$ and $C_{6}/C_{2}$ approach negative values in the highest-multiplicity events, which implies that thermalized QCD matter may be formed in $p$+$p$ collisions.
(c) Charged-particle multiplicity distribution.
(d) Event-by-event net-proton multiplicity distributions for $|y|<0.5$ and $0.4<p_{\rm{T}}<2.0$ GeV/$c$ at two ranges of charged particle multiplicity as indicated in the legend.
Net-proton cumulant ratios, (a) $C_{2}/C_{1}$, (b) $C_{3}/C_{2}$, (c) $C_{4}/C_{2}$, (d) $C_{5}/C_{1}$, and (e) $C_{6}/C_{2}$ as a function of charged-particle multiplicity from $\sqrt{s}=200$ GeV $p$+$p$ collisions. Black solid lines and red bands represent the statistical and systematic uncertainties, respectively. Cyan points represent event averages for $3 < m_{\rm ch}^{\rm TPC} < 30$, and they are plotted at the corresponding value of $m_{\rm ch}^{\rm TPC}$. The uncertainties on the cyan points are smaller than the marker size. The Skellam baselines are shown as dotted lines. The results of the PYTHIA8 calculations are shown by hatched-golden bands. The golden bands at $m_{\rm ch}^{\rm TPC}\approx 6$ are the results from the PYTHIA8 calculations averaged over multiplicities.
New measurements of the polarization of the recoil protons from the reaction γ + p → π o + p are reported for the region of the first resonance. These measurements are an extension of earlier experiments, done on the 500 MeV-electron-synchroton. More data have been taken at photon energies of 240, 300, 360 and 420 MeV.
No description provided.
The vector analyzing power Ay for the reaction Full-size image (<1 K) has been measured at five angles between 60° and 140° in the lab at an incident neutron energy of 67.7 MeV. The measurement is of a presision never before acheived (ΔAy ⩽ 0.01, statistical) for this observable. This precision makes possible a quantitative comparison with meson-exchange theories, thus enhancing our understanding of the role of non-nucleonic degrees of freedom.
No description provided.
The reaction e + p → e ′+ N ∗ was studied for four momentum transfers up to 2.34 (GeV/ c ) 2 in the region of the 1236 MeV isobar. An analysis of the data in terms of the cross sections σ T and σ L for the absorption of transverse and longitudinal photons is given for invariant masses of the final pion nucleon system W =1.220 GeV and W =1.350 GeV.
Total errors are presented.
Total errors are presented.
Total errors are presented.
A measurement of the spin correlation parameters A xx (90° cm) and A yy (90° cm) of 47.5 MeV proton-proton scattering has been performed by means of polarized beam and a polarized target.
No description provided.
None
No description provided.
The angular distribution of the polarization of the recoil protons from the reactionγ+p→π 0+p has been measured at a photon energy of 360 MeV and at pion CM angles of 58°, 75°, 96° and 105°. The polarization of the protons has been determined by the left to right ratio in scattering on a helium gas target. The trajectory of each scattered proton has been measured by a system of spark chambers.
No description provided.
The polarization of the recoil proton from the reaction 7+p--->~pi0+p has been measured using liquid helium as polarization analyser. The photon energy has been varied between 250 and 360 MeV, the pion angle (CM) between 58 and 100.
No description provided.
Mit einem magnetischen Spektrometer wurde am Bonner 500 MeV-Elektronen-Synchrotron die Reaktionγ+p→π ++n für Photonenenergien zwischen 200 und 450 MeV untersucht. Es wurden Anregungskurven für die Lab
No description provided.
No description provided.
No description provided.