Cross sections for ρ0 electroproduction measured in a streamer-chamber experiment are separated into elastic (ep→epρ0) and inelastic production channels. For the elastic channel, the total cross section and t dependence are presented. For the inelastic channel (1σ)dσdz, (1σ)dσdpT2, and a density matrix element are shown and compared to quark-parton-model predictions. The ratio of ρ0 to direct π0 production is found to be 2.0±0.5±0.3, where the first error is statistical, and the second error is systematic.
No description provided.
No description provided.
No description provided.
Elastic cross-section measurements are presented for π ± −p at 20 GeV/ c and π − −p at 30 GeV/ c incident momenta in the large angle region (50° to 90° in the c.m. system). The data are compared with published lower energy elastic cross sections. A test is made of the dimensional counting rules for π ± −p elastic scattering and some indication of a deviation from this rule is observed in the π − −p case. A comparison is also made with the predictions of the constituent interchange model. Although the broad features of the predictions are confirmed, there are some important discrepancies. Finally, the predictions of the model due to Preparata and Soffer are also compared with the new data.
No description provided.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
A description is given of an experimental study of exchange degeneracy (EXD) in hypercharge-exchange reactions using the line-reversed partners π + p→K + Σ + (K − p→ π − Σ + ) and π + p→ K + Σ + (1385) (K − p→ π − Σ + (1385)) at incident momenta of 7.0 and 10.1 GeV/ c . Both pairs of reaction were measured in the same apparatus, with particular care being taken to minimize relative normalization errors. For the Σ production reactions we present high statistics measurements of the differential cross sections and polarizations from t ′=0 to large t . The general trends of the data agree with naive expectations from weak EXD. The cross-section difference in the extreme forward direction at the higher momentum is consistent with zero and there is a general reduction in the cross-section differences going from the lower to the higher momentum. The polarizations are approximately equal in magnitude and of opposite sign between the two reactions. On the other hand, the data do not agree with the detailed predictions of EXD. The slope for the positive reaction is systematically steeper in the forward region than for the negative reaction and there is a complex s and t dependence for the cross-section differences including a cross-over at t ⋍ −0.8( GeV /c) 2 . For the Σ(1385) production reactions, we present differential cross-section measurements in the forward region (| t |<0.3(GeV/ c ) 2 ). The cross-section differences are substantial and essentially constant over the s and t ranges studied.
THESE RESULTS WERE BRIEFLY REPORTED IN A. BERGLUND ET AL., PL 73B, 369 (1978), THE RECORD OF WHICH INCLUDES THE TABULATED DATA.
THE RESULTS AT 10.1 GEV WERE FIRST PUBLISHED IN A. BERGLUND ET AL., PL 60B, 117 (1975), THE RECORD OF WHICH INCLUDES THE TABULATED DATA.
None
.
DATA OBTAINED IN ASSUMPTION THAT RHO(MM=00,P=3,XYZ=SH)=1-2*RHO(MM=1-1,P=3,XYZ=SH).
INTEGRATED CROSS SECTION, INCLUDING SYSTEMATIC UNCERTAINTY IN ERRORS Axis error includes +- 15/15 contribution (DECAY-BR(BRN=OMEGA --> PI0 GAMMA,BR=0.088 +- 0.005)).
A high statistics measurement of the reaction π − p → π 0 n has been performed at the Serpukhov accelerator for 15, 20, 25, 30 and 40 GeV/ c incident pion momentum using the NICE set-up with its associated 648-channel hodoscope spectrometer for γ-ray detection. More than 3 million charge-exchange events have been recorded in total. It is found that the spin-flip and non-spin-flip amplitudes can be parametrized, for small | t |, as exponentials with the same slopes to within a few percent. Also the behaviour of the differential cross section for small and medium | t | agrees with the prediction of a geometrical s -channel model which describes binary reactions in terms of a complex pole b 0 ( s ). The imaginary part of this universal pole, Im b 0 ( s ), has been determined and found to be growing logarithmically with s .
No data in this table.
Measurements were made of the cross section of the reactions π − p → ν ′(958)n, η ′ → 2 γ at momenta at 15, 20, 25, 30 and 40 GeV/c. The experiment was carried out on the IHEP 70 GeV accelerator using the 648 channel hodoscope spectrometer NICE for γ-ray detection. A total of 6000 η′ mesons were recorded. A sharp drop is seen in the differential cross section for t → 0. The dependences of the differential cross sections for the π − p → η ′n and π − p → η n on t are identical. On the basis of the ratio of the cross sections for these reactions at t = 0, i.e. R( η′ n ) t=0 = 0.55 ± 0.06 , the singlet-octet mixing angle for pseudoscalar mesons was determined to be β = −(18.2 ± 1.4)°.
.
AVERAGE RATIO IS 2.76 +- 0.07 PCT.
AVERAGE RATIO IS 0.52 +- 0.02.
The energy dependence of the K L 0 -K S 0 transmission regeneration amplitudes on deuterons and neutrons in the momentum region 10–50 GeV/ c is determined. The moduli of the modified transmission amplitudes are momentum dependent. These dependences are fitted by the expression A j p − nj , where A j and n j ( j = d, n) are constants: A d =2.88 ±0.04 mb , n d =0.546±0.030, for deuterons , A n =1.97 ±0.14 mb , n n =0.530±0.019, for neutrons , The amplitude phases do not depend on the kaon momentum and are equal to ϕ d = (−130.9 ± 2.7)° ϕ n = (−132.3 ± 1.7)°. The mean value of the ratio of the total cross-section differences for K 0 and K 0 interactions with neutrons and protons is determined. The residues of the partial ω and ϱ amplitudes, which contribute to the kaon-nucleon interaction amplitudes, are also obtained.
FORWARD CROSS SECTION, AMPLITUDE AND PHASE FOR K0 REGENERATION.
(AK0 - K0) TOTAL CROSS SECTION DIFFERENCES.
A high-statistics measurement of the reaction π − p→ η n; η →2 γ has been performed at the 70 GeV Serpukhov accelerator for 15, 20, 25, 30 and 40 GeV/ c incident pion momentum using the NICE set-up with its associated 648-channel hodoscope spectrometer for γ-ray detection. It is found that the spin-flip and non-spin-flip amplitudes can be parametrized, for small | t |, as exponentials with the same slopes to within a few percent. For | t | ≳ 1 (GeV/ c ) 2 there is a break in the differential cross section. In addition, the A 2 effective trajectory deviates markedly for | t | ≳ 1 GeV/ c ) 2 from the linear behaviour valid for smaller | t |.
No description provided.
No description provided.
No description provided.
The differential cross sections for K − p and p p elastic scattering have been measured over the range of four-momentum transfer squared 0.18<− t <3.3 (GeV/ c ) 2 . The K − p data decrease smoothly as a function of − t , whereas, the p p data shows a break at − t = 0.6 (GeV/ c ) 2 followed by a fast drop to − t ≅ 1.6 (GeV/ c ) 2 where the differential cross section levels off and stays constant out to − t = 3 (GeV/ c ) 2 .
No description provided.
No description provided.
For the first time, the line reversed reactions π + p→K + Σ + and K − p→ π − Σ + have been studied in the same apparatus. We present the differential cross sections and polarizations over a large t range and at two momenta, 7.0 and 10.1 GeV/ c . The differential cross sections as a function of t are shown for the first time to cross over. Going from the lower to the higher momentum, the differences in cross section between the two reactions diminish at low | t | by about a factor 2. We find large polarizations of opposite sign for the two reactions. The momentum dependence, presented in the form of α eff ( t ) for the t range 0 to −2 (GeV/ c ) 2 , is compared with the expectations from the K ∗ −K ∗∗ trajectory.
-TMIN = 0.0100 GEV**2.
-TMIN = -0.0087 GEV**2.
-TMIN = 0.0067 GEV**2.