Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.
The mean from the NBD fit as a function of $N_{part}$ for 200 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.
The mean from the NBD fit as a function of $N_{part}$ for 62.4 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.
J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.
J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.
J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].
Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.
We report the measurement of direct photons at midrapidity in Au+Au collisions at sqrt{s_NN} = 200 GeV. The direct photon signal was extracted for the transverse-momentum range of 4 GeV/c < p_T < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive-photon sample. The direct-photon nuclear-modification factor R_AA was calculated as a function of p_T for different Au+Au collision centralities using the measured p+p direct-photon spectrum and compared to theoretical predictions. R_AA was found to be consistent with unity for all centralities over the entire measured p_T range. Theoretical models that account for modifications of initial-direct-photon production due to modified-parton-distribution functions in Au and the different isospin composition of the nuclei, predict a modest change of R_AA from unity and are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.
J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.
Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.
Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
Measurements of double-helicity asymmetries for inclusive hadron production in polarized p+p collisions are sensitive to helicity--dependent parton distribution functions, in particular to the gluon helicity distribution, Delta(g). This study focuses on the extraction of the double-helicity asymmetry in eta production: polarized p+p --> eta + X, the eta cross section, and the eta/pi^0 cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions.
Cross section ratio for the midrapidity production of inclusive $\eta$ to $\pi^0$ mesons at $\sqrt{s}$ = 200 GeV as a function of $p_T$. The error bars show the statistical and systematic uncertainties added in quadrature. The solid curve shows the ratio of the NLO pQCD calculations shown in Fig. 3 and the corresponding one for the $\pi^0$. The dashed curve shows the result of a PYTHIA Monte-Carlo simulation.
Double helicity asymmetry for midrapidity inclusive $\eta$ production from the combined 2005 and 2006 data at $\sqrt{s}$ = 200 GeV as a function of $p_T$. An additional 4.8% systematic uncertainty in the beam polarizations is not shown.
Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.
$R_{dA}$ ($d$+Au data/scaled $p+p$ fit). Nuclear modification factor for $d$+Au, $R_{dA}$, as a function of $p_{T}$ . The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. The box on the right shows the uncertainty of $T_{dA}$ for $d$+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss.
The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.
The cross section results for forward neutron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV are shown. Two different forms, exponential and Gaussian, were used for the $p_T$ distribution. The integrated $p_T$ region for each bin is 0 < $p_T$ < 0.11$x_F$ GeV/$c$.
The $x_F$ dependence of $A_N$ for neutron production in the ZDC trigger sample.
The $x_F$ dependence of $A_N$ for neutron production for the ZDC$\otimes$BBC trigger sample.
PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.
Transverse momentum in GeV/$c$ for $\pi^{\pm}$.
Transverse momentum in GeV/$c$ for $\pi^{\pm}$.