Details of the nuclear structure of $^{\rm 129}$Xe, such as the quadrupole deformation and the nuclear diffuseness, are studied by extensive measurements of anisotropic-flow-related observables in Xe--Xe collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{_{\mathrm{NN}}}}~=~5.44$ TeV with the ALICE detector at the LHC. The results are compared with those from Pb--Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}}~=~5.02$ TeV for a baseline, given that the $^{\rm 208}$Pb nucleus exhibits a very weak deformation. Furthermore, comprehensive comparisons are performed with a state-of-the-art hybrid model using IP-Glasma+MUSIC+UrQMD. It is found that among various IP-Glasma+MUSIC+UrQMD calculations with different values of nuclear parameters, the one using a nuclear diffuseness parameter of $a_0=0.492$ and a nuclear quadrupole deformation parameter of $β_2=0.207$ provides a better description of the presented flow measurements. These studies represent the first systematic exploration of nuclear structure at TeV energies, utilizing a comprehensive set of anisotropic flow observables. The measurements serve as a critical experimental benchmark for rigorously testing the interplay between nuclear structure inputs and heavy-ion theoretical models.
Charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.
Charged particle $v_2\{4\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.
Ratio between Xe$-$Xe and Pb$-$Pb charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality.
One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons and so high-quality measurements exist only for hadrons containing up and down quarks. Here we demonstrate that measuring correlations in the momentum space between hadron pairs produced in ultrarelativistic proton-proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of p-omega baryon correlations, the effect of the strong interaction for this hadron-hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations. The large number of hyperons identified in proton-proton collisions at the LHC, together with an accurate modelling of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction.
The p--$\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Xi}^{+}$ correlation function.
The p--$\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Xi}^{+}$ correlation function.
The p--$\Omega^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Omega}^{+}$ correlation function.