We present the first results of a measurement of the total cross-section σ T in proton-proton collisions at equivalent laboratory momenta between 291 and 1480 GeV/ c at the CERN Intersecting Storage Rings (ISR). The method is based on the measurement of the ratio of the total interaction rate and the machine luminosity. The data show an increase of about 10% in σ T in this energy interval.
No description provided.
Production and decay characteristics of electroproduced rho mesons were studied in the final state epπ + π − .
No description provided.
The inelastic reaction p+p→p+X is studied at 205 GeV/c. The distribution of the square of the missing mass, M2, shows a large diffractivelike peak at low M2 due to two-, four-, and six-prong events. The slope of the invariant cross section versus t decreases with increasing M2. The energy dependences of the multiplicity moments for the recoiling system X are similar to those for corresponding moments for p+p→(n chargedparticles).
No description provided.
From analysis of V0 events observed in an exposure of the National Accelerator Laboratory 30-in. bubble chamber to 303−GeVc protons, we obtain these results: (1) 〈nπ0〉 rises approximately linearly with n-, implying strong coupling of neutral and charged pions, while 〈nKS0〉 is less coupled to n; (2) γ, KS0, and Λ0 production cross sections are approaching a scaling limit by 303 GeVc; (3) within the limited statistics, dσdy is flat in the central region for KS0 and low-multiplicity γ events.
No description provided.
None
APPROXIMATELY CONSTANT MOMENTUM TRANSFER.
We present the first results of an experiment at the CERN intersecting storage rings, which measures the total cross-section in proton-proton collisions. The equivalent laboratory momenta are 291, 496, 1068 and 1480 GeV/c. We have made a direct measurement of αT as the ratio between the total interaction rate and the machine luminosity. The present paper gives a detailed description of the experimental apparatus and of the analysis procedure. We find that αT increases by about 10% in the energy region studied.
No description provided.
We have measured the reaction γ p → p π + π − in the DESY 1 m Streamer Chamber. The dominant ϱ o production is analyzed in terms of various models.
No description provided.
FOR ALL EVENTS.
FOR ALL TWO PION EVENTS.
We have studied the K ππ system in the 14.3 GeV/ c reactions K − p → K − π + π − p, K − p → K 0 π − π 0 and K − p → K 0 π + π − n . The data have been obtained from a 500 000 picture exposure of the CERN 2m HBC. The first two final states are dominated by Q-production in the Kππ system; there is also an L-signal at M (K ππ ) ∼ 1.75 GeV. The reaction cross sections are compared to K − p data at other energies. We discuss the K ππ mass dependence of the diffractive production slope. Evidence is presented for a Q − p versus Q + p differential cross section cross-over around | t | = 0.17 GeV 2 . A t -channel isospin analysis for the KN → K ∗(890)π N channels in the Q-region shows that the I = 1 exchange amplitude is ⋍ 10% of the dominant I = 0 exchange amplitude. The K ππ decay distributions indicate a predominant J P = 1 + state in the Q-region, and an important J P = 2 − contribution in the L-region. We find neither s -channel nor t -channel helicity conservation at the meson vertex in the Q- or L-regions. The K π angular correlation moments within the K ππ diffractive system are characteristic of K π elastic scattering, suggesting a π -exchange Deck-type production mechanism. There is evidence for a Kf 0 and κπ contribution (where κ is the J P (K π ) = 0 + state) to the diffractive K ππ system. A fit to the K − π + π − and K 0 π − π 0 Dalitz-plot distributions for the Q-re gion indicates that the ratio of K ϱ to K ∗ π decay amplitudes decreases with increasing K ππ mass.
No description provided.
We present experimental results on the K + n → K + n differential cross sections measured in deuterium at 13 momenta between 0.64 and 1.51 GeV/ c .
REACTION HAS A SPECTATOR PROTON. WHILE SOME DEUTERIUM CORRECTIONS HAVE BEEN APPLIED, THESE DATA ARE NOT DIVIDED BY THE DEUTERIUM FORM FACTOR APPEARING IN THE IMPULSE APPROXIMATION.
The reaction γp→; π + π − p in the energy range 4.1 to 6.2 GeV has been studied with a tagged photon beam incident on a liquid hydrogen target in the DESY one-meter streamer chamber. The reaction is analysed in terms of the longitudinal phase space (LPS) method. The one-pion-exchange model for Δ(1236) production and decay is examined. For the diffractive part of the LPS a dual model with pomeron exchange is investigated. In particular, the s -channel helicity conservation dual model of Dewey and Humpert describes the data well.
No description provided.
CORRECTED FOR LOSSES AT SMALL T (UNLIKE VALUES OF 'REF 1'). BACKGROUND SUBTRACTION ERROR HAS BEEN ADDED QUADRATICALLY TO THE STATISTICAL ERROR.
No description provided.