We present measurements of two-particle angular correlations in hadron jets produced in e + e − annihilation between 7.7 and 31.6 GeV c.m. energy. The data are compared to predictions of high order perturbative QCD calculations.
No description provided.
Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.
THRUST AND PLANARITY DISTRIBUTIONS. FINAL (BETTER) THRUST DISTRIBUTIONS WITH DETECTOR CORRECTIONS TO BE PUBLISHED LATER.
No description provided.
Measurements of the polarization parameters and angular distributions are reported for π±p elastic scattering at 100 GeV/c and for pp elastic scattering at 100- and 300-GeV/c incident momentum. The π±p data cover the kinematic range 0.18≤−t≤1.10 GeV2 and are in agreement with current Regge-model predictions. The pp data cover the kinematic range 0.15≤−t≤1.10 GeV2 and 0.15≤−t≤2.00 GeV2 at 100 and 300 GeV/c, respectively, and are found to be consistent with absorption-model predictions.
THESE ANGULAR DISTRIBUTIONS AND POLARIZATION PARAMETERS ARE TABULATED IN THE RECORD OF THE EARLIER BRIEF REPORT OF THIS EXPERIMENT USING PION BEAMS: I. P. AUER ET AL., PRL 39, 313 (1977).
THESE ANGULAR DISTRIBUTIONS AND POLARIZATION PARAMETERS ARE TABULATED IN THE RECORD OF THE EARLIER BRIEF REPORT OF THIS EXPERIMENT USING A PROTON BEAM: J. H. SNYDER ET AL., PRL 41, 781 (1978) AND PRL 41, 1256(E) (1978).
The Wolfenstein parameters D, R, and A and the polarization parameter P have been measured for p−p elastic scattering at 312, 392, 493, and 575 MeV kinetic energy. The center-of-mass angular range observed was from 3° to 33°. The experiment was performed at SIN, using a polarized proton beam. These data significantly improve the determination of I=1 phase shifts.
No description provided.
No description provided.
No description provided.
We have measured the spin-correlation parameters A00kk, A00ks, and A00ss in p−p scattering between 400 and 600 MeV using a longitudinally polarized beam and a butanol target polarized in the horizontal plane. Owing to the restrictive geometrical acceptance of the target, the polarization axis of the target was oriented at an angle α with respect to beam direction. The parameters A00kk and A00ks were therefore measured as a linear combination at 577, 536, 514, 494, and 445 MeV. These experiments were extended to the measurement of A00ks and A00ss by using a transversely polarized beam. We present the results, which are compared with phase-shift predictions.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.
No description provided.
SIG = 4*PI*LEG(L=0).
FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.
We have performed a search for narrow resonances in the center of mass energy range from 29.90 to 31.46 GeV using the e + e − storage ring PETRA at DESY. We present the total cross section for hadron production and an upper limit for resonance production, indicating that no bound state of charge- 2 3 quarks exists in this energy range.
AVERAGE VALUE OF R OVER THE SCAN REGION.
THESE MEASUREMENTS COMBINED WITH PREVIOUS DATA AT 30.0 AND 31.6 GEV REPORTED IN CH. BERGER ET AL., PL 86B, 413 (1979).
We present the B( d θ d y ) y=0 for J /ψ over thefull range of ISR energies and for ϒ at √ s = 53 and 63 GeV, using their dielectron decay mode. The average transverse momentum and the decay angles are presented. We found ( p T ) = 1.75 ± 0.19 GeV for ϒ, being higher than ( p T ) of the continuum and rising with √s. We present a comparison of the cross sections of J/ψ and ϒ with those of the continuum, at the same masses, as a function of √s. An appropriate scaling of the hadronic production of quark-antiquark narrow bound states involving ⋉, J/ψ, ψ′, ϒ, and ϒ′ is presented as a function of m /√ s at y = 0, and is compared with Drell-Yan scaling.
No description provided.
UPSILON HERE = UPSILON+UPSILON PRIME.
Data from a study of electron pairs produced in pp collisions (√ s = 5 and 63 GeV) are used to extend measurements of the scaling function down to m /√ s ≈ 0.07 (4.5 < m < 19 GeV). The dilepton continuum can be described by the scaling formula (fx475-1)
No description provided.
No description provided.