A measurement of the differential cross section for the reaction n + p → d + π° has been made using a neutron beam with kinetic energies up to 720 MeV. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. The photons from the decaying π° were not detected. The neutron energy was calculated from the measured deuteron angle and momentum. The cross sections are compared to those for the reaction π + + d ⇆ p + p as a test of isotopic spin invariance in strong interactions. The symmetry of the cross sections about 90° is also investigated, and an upper limit of about 1% is placed on the real part of the ratio of isospin-violating to isospin-conserving amplitudes.
EKIN IS 325 TO 675 MEV.
We present the results of a study of 1173 uniquely identified events of the K 0 π + p final state produced in 10 GeV/ c K + p interactions. This final state is dominated by the quasi two-body processes K + p → K 0 N ∗+ (890 p and K + p → K ∗+ (1420) p . The background is very low and there is little overlapping of resonance bands. We present cross sections, t -distributions and decay angular distributions for the contributing reaction channels. Dips are observed near t = 0 in the differential cross sections for all three processes.
BREIT-WIGNER FIT.
NUMERICAL VALUES TAKEN FROM THE COMPILATION LST7V2 FOX 72B.
No description provided.
41 ± 8 events of the type X 0 → γγ have been observed in a study of the reaction π − p → n(X 0 → γγ ) at 1.6 GeV/ c incident π -momentum. This provides further evidence to our previous observation of this new X 0 decay mode and allows the determination of the branching ratio Γ(X 0 →γγ) Γ(X 0 → total =(1.7 ± 0.4)%. The theoretical implications of this result are discussed.
THIS MEASUREMENT WHEN COMBINED WITH THE ETAPRIME PRODUCTION CROSS SECTION OF M. BASILE ET AL., NC 3A, 371 (1971) YIELDS A BR(ETAPRIME --> 2GAMMA) OF 1.7 +- 0.4 PCT.
We have measured the reaction γ+n→π0+n at a photon energy of 4 GeV for 0.2<~−t<~1.8(GeVc)2. The cross section is slightly less than that with protons as a target.
No description provided.
Data on the polarization parameter in pp elastic scattering in the | t |-range from ∼0.1 to ∼ 2.9 (GeV/ c ) 2 and at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Results on polarization in π − p and π + p forward elastic scattering at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Results on polarization in K − p, K + p and p̄p forward elastic scattering at 10 and 14 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
The reactions π−p→ n+(X0→total) and π−p→ n+(X0→neutrals) have been studied at 1.6 GeV/c with the Bologna-CERN neutron missing-mass spectrometer. Both reactions have been detected without the use of visual techniques. The results are: σ(X0→total)=(108±14) μb and σ(X0→neutrals)=(20.0±3.5) μb, giving a branching ratio Γ(X0→neutrals)/Γ(X0→total)=(18.5±2.2)%. The branching ratio for other possible, so far undetected, neutral decay modes of the X0 turns out to be (2.4±1.9)%.
No description provided.
We have made measurements of polarization in π−p elastic scattering, with emphasis over the backward region, at 1.60 to 2.28 GeVc. The results indicate the absence of u-channel dominance in the backward region, as was observed in the case of π+p scattering. Comparisons have been made with predictions of various phase-shift analyses which show that the agreement is generally very poor in the backward region.
No description provided.
No description provided.
No description provided.
The p¯p total inelastic cross section has been measured in a hydrogen bubble chamber for p¯ momenta from 100 to 550 MeV/c. Below 200 MeV/c the cross section increases rapidly to several barns. From this behavior it is inferred that high partial waves, perhaps to L=3, are important in the annihilation at the lowest momenta studied. An abrupt change in the momentum dependence of the total absorption cross section occurs at about 350 MeV/c in the vicinity of previously observed structure in backward elastic scattering.
No description provided.
No description provided.
No description provided.