We report the $p+p$ and $p+d$ differential cross sections measured in the SeaQuest experiment for $J/\psi$ and $\psi\left(2S\right)$ production at 120 GeV beam energy covering the forward $x$-Feynman ($x_F$) range of $0.5 < x_F <0.9$. The measured cross sections are in good agreement with theoretical calculations based on the nonrelativistic QCD (NRQCD) using the long-distance matrix elements deduced from a recent global analysis of proton- and pion-induced charmonium production data. The $\sigma_{\psi\left(2S\right)} / \sigma_{J/\psi}$ cross section ratios are found to increase as $x_F$ increases, indicating that the $q \bar{q}$ annihilation process has larger contributions in the $\psi\left(2S\right)$ production than the $J/\psi$ production. The $\sigma_{pd}/2\sigma_{pp}$ cross section ratios are observed to be significantly different for the Drell-Yan process and $J/\psi$ production, reflecting their different production mechanisms. We find that the $\sigma_{pd}/2\sigma_{pp}$ ratios for $J/\psi$ production at the forward $x_F$ region are sensitive to the $\bar{d}/ \bar{u}$ flavor asymmetry of the proton sea, analogous to the Drell-Yan process. The transverse momentum ($p_T$) distributions for $J/\psi$ and $\psi\left(2S\right)$ production are also presented and compared with data collected at higher center-of-mass energies.
The differential cross sections per nucleon, $d\sigma/dx_{F}$ (in nb), for $J/\psi$ production in $p+p$ collision at 120 GeV for different $x_F$ bins.
The differential cross sections per nucleon, $d\sigma/dx_{F}$ (in nb), for $J/\psi$ production in $p+d$ collision at 120 GeV for different $x_F$ bins.
The differential cross sections per nucleon, $d\sigma/dx_{F}$ (in nb), for $\psi(2S)$ production in $p+p$ collision at 120 GeV for different $x_F$ bins.
The fundamental building blocks of the proton, quarks and gluons, have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as for example its spin. The two up and the single down quarks that comprise the proton in the simplest picture account only for a few percent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions where a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, since their masses are quite similar and small compared to the mass of the proton. In the present manuscript, we show evidence from muon pair production measurements that these distributions are significantly different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momentum. These results revive interest in several proposed mechanisms as the origin of this antimatter asymmetry in the proton that had been disfavored by the previous results and point to the future measurements that can distinguish between these mechanisms.
Cross section ratios $\sigma_{D}/2\sigma_{H}$ binned in $x_t$ with their statistical and systematic uncertainties and the average values for the kinematic variables of each $x_t$ bin. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column is the experimental resolution in $x_t$ as determined by Monte Carlo simulations.
Ratios of $\bar{d}(x)$ to $\bar{u}(x)$ with their upper and lower statistical and systematic uncertainties. The analysis was based on the present cross section ratio data, and next-to-leading order calculations of the Drell-Yan cross sections using CT18 parton distributions for all except the ratio of $\bar{d}(x)$ to $\bar{u}(x)$. The systematic uncertainty is fully correlated among all $x$ bins. The systematic uncertainty does not include a contribution from the choice of the base (CT18) pdf, which is small if added in quadrature to the other systematic uncertainties.
Ratios of $\mathbf{\sigma_D}$ to $\mathbf{2\sigma_H}$ as a function of $\mathbf{P_T}$. Ratios of $\sigma_D$ to $2\sigma_H$ with their statistical and systematic uncertainties as a function of transverse momentum, $P_T$. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column, $\delta P_T$ is the experimental resolution in $P_T$ as determined by Monte Carlo simulation.