A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.
The differential cross section DSIG/DT for the LRG and the LPS data samples.
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in pp-bar collisions at a center-of-mass energy sqrt(s)=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb-1. Azimuthal correlations are stronger at larger transverse momenta. These are well-described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where soft effects are significant.
Distribution for the maxPT jet from 75 to 100 GeV.
Distribution for the maxPT jet from 100 to 130 GeV.
Distribution for the maxPT jet from 130 to 180 GeV.
The cross section for the photoproduction of events containing three jets with a three-jet invariant mass of M_3J > 50 GeV has been measured with the ZEUS detector at HERA. The three-jet angular distributions are inconsistent with a uniform population of the available phase space but are well described by parton shower models and O(alpha alpha_s^2) pQCD calculations. Comparisons with the parton shower model indicate a strong contribution from initial state radiation as well as a sensitivity to the effects of colour coherence.
Cross section in the specified kinematic range.
The measured 3-jet cross-section w.r.t. the 3-jet invariant mass.
The measured distribution in THETA(P=3).
Elastic and proton-dissociative rho0 photoproduction (gamma p-->rho0 p,gamma p -->rho0 N,with rho0-->pi+pi-) has been studied in ep interactions at HERA for gamma-p centre-of-mass energies in the range 50
Integrated elastic rho0 photoproduction cross section.
Integrated elastic pi+ pi- photoproduction cross section.
Differential T distribution. Statistical errors only.
Elastic $\rho~0$ photoproduction has been measured using the ZEUS detector at HERA. Untagged photoproduction events from $ep$ interactions were used to measure the reaction $\gamma p \rightarrow \rho~0 p$ ($\rho~0 \rightarrow \pi~+ \pi~-$) at photon-proton centre-of-mass energies between 60 and 80GeV and $|t|<0.5$GeV$~2$, where $t$ is the square of the four-momentum transferred at the proton vertex. The differential cross section $d\sigma/dM_{\pi\pi}$, where $M_{\pi\pi}$ is the invariant mass of the two pions, and the integrated cross section, $\sigma_{\gamma p\rightarrow \rho~0 p}$, are presented; the latter was measured to be $14.7\pm 0.4(\mbox{stat.})\pm2.4(\mbox{syst.})\mu\mbox{b}$. The differential cross section $d\sigma/dt$ has an approximately exponential shape; a fit of the type $A~{\prime}_{t} \exp{(-b~{\prime}_{t}|t| + c~{\prime}_{t} t~2)}$ yields a $t$-slope $b~{\prime}_{t}= 9.9\pm1.2(\mbox{stat.})\pm 1.4(\mbox{syst.})\mu\mbox{b}$. The results, when compared to low energy data, show a weak energy dependence of both $\sigma_{\gamma p\rightarrow \rho~0 p}$ and of the $t$-slope. The $\rho~0$ is produced predominantly with transverse polarisation, demonstrating that $s$-channel helicity conservation holds at these energies.
Integrated cross section for exclusive rho0 <pi+ pi-> production where 2Mpi < Mpi pi < Mrho + 5width0.
No description provided.
Applying the Spital and Yennie method to each t bin. No errors given.