The first search for the Z boson decay to $\tau\tau\mu\mu$ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the Z $\to$ $\tau\tau\mu\mu$ to Z $\to$ 4$\mu$ branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators.
Distribution of $m_{4\mu}$ after the maximum likelihood fit of the background-only model (stacked histograms) to the data (black points). The nuisance parameters are set to their post-fit values and the signal (black dotted line) is overlaid, scaled to the upper limit on its cross section of 6.9 times the SM expectation. The gray shaded areas in both panels correspond to the total uncertainty in the background prediction. The black vertical bars indicate the statistical uncertainty in the data.
Observed limits at the 95% CL on $C_{\mathrm{LL}}^{2233}$ vs. $C_{\mathrm{LR}}^{2332}$ (red) showing the full range.
Observed limits at the 95% CL on $C_{\mathrm{LR}}^{2233}$ vs. $C_{\mathrm{LL}}^{2332}$ (orange) showing the full range.
A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$$\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$$m_\mathrm{a}$$\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell = $ $\mu$, $\tau$) channels.
Post-fit BDT distributions in the WH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines WH20 GeV, WH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.
Post-fit BDT distributions in the ZH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines ZH20 GeV and ZH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.
Model independent 95% CL upper limits on σ(VH) B(H → aa → bbbb)/σ(SM) for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where “a” is a new pseudoscalar particle decaying through a → bb, and σ(SM) is the SM Higgs boson production cross section.
A search for physics beyond the standard model (SM) in the final state with a hadron- ically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of- mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb−1. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector bo- son and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper lim- its on the cross section of t-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.
The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.
Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.
Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).
Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.
Expected and observed 95\% CL upper limits on the branching fraction of the top quark decaying to the Higgs boson and a light-flavor quark (either an up or a charm quark)
The results of a search for direct pair production of heavy top-quark partners in 4.7 fb-1 of integrated luminosity from pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC are reported. Heavy top-quark partners decaying into a top quark and a neutral non-interacting particle are searched for in events with two leptons in the final state. No excess above the Standard Model expectation is observed. Limits are placed on the mass of a supersymmetric scalar top and of a spin-1/2 top-quark partner. A spin-1/2 top-quark partner with a mass between 300 GeV and 480 GeV, decaying to a top quark and a neutral non-interacting particle lighter than 100 GeV, is excluded at 95% confidence level.
(1) Number of generated MC events for the scalar top signal grid (2) Relative Cross section uncertainties for the scalar top signal grid.
(1) Acceptance of the same flavour selection for the scalar top signal grid (2) Selection efficiency of the same flavour selection for the scalar top signal grid (3) Product of the acceptance and efficiency of the same flavour selection for the scalar top signal grid (4) Relative experimental uncertainties on the acceptance times efficiency of the same flavour selection for the scalar top signal grid.
(1) Acceptance of the different flavour selection for the scalar top signal grid (2) Selection efficiency of the different flavour selection for the scalar top signal grid (3) Product of the acceptance and efficiency of the different flavour selection for the scalar top signal grid (4) Relative experimental uncertainties on the acceptance times efficiency of the different flavour selection for the scalar top signal grid.