Date

Measurement of associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 269, 2019.
Inspire Record 1705068 DOI 10.17182/hepdata.89879

Measurements are presented of associated production of a W boson and a charm quark (W+c) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 35.7 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The W bosons are identified by their decay into a muon and a neutrino. The charm quarks are tagged via the full reconstruction of D$^*$(2010)$^\pm$ mesons that decay via D$^*$(2010)$^\pm \to$ D$^0$ + $\pi^\pm \to$ K$^{\mp}$ + $\pi^\pm$ + $\pi^\pm$. A cross section is measured in the fiducial region defined by the muon transverse momentum $p_{T}^{\mu} >$ 26 GeV, muon pseudorapidity $|\eta^{\mu}| <$ 2.4, and charm quark transverse momentum $p_{T}^{c} >$ 5 GeV. The inclusive cross section for this kinematic range is $\sigma$(W+c) = 1026 $\pm$ 31 (stat) $\substack{+76\\-72}$ (syst) pb. The cross section is also measured differentially as a function of the pseudorapidity of the muon from the W boson decay. These measurements are compared with theoretical predictions and are used to probe the strange quark content of the proton.

6 data tables

The differential measurement of W + charm as a function of the absolute peudorapidity of the muon originating from the W boson.

The differential measurement of W+ + cbar as a function of the absolute peudorapidity of the muon originating from the W boson.

The differential measurement of W- + c as a function of the absolute peudorapidity of the muon originating from the W boson.

More…

Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 99 (2019) 092005, 2019.
Inspire Record 1704945 DOI 10.17182/hepdata.90686

A search is presented for the production of a Higgs boson in association with a single top quark, based on data collected in 2016 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The production cross section for this process is highly sensitive to the absolute values of the top quark Yukawa coupling, $y_t$, the Higgs boson coupling to vector bosons, $g_\mathrm{HVV}$, and, uniquely, to their relative sign. Analyses using multilepton signatures, targeting H $\to$ WW, H $\to$ $\tau\tau$, and H $\to$ ZZ decay modes, and signatures with a single lepton and a $\mathrm{b\overline{b}}$ pair, targeting the H $\to$ $\mathrm{b\overline{b}}$ decay, are combined with a reinterpretation of a measurement in the H $\to$ $\gamma\gamma$ channel to constrain $y_\mathrm{t}$. For a standard model-like value of $g_\mathrm{HVV}$, the data favor positive values of $y_\mathrm{t}$ and exclude values of $y_\mathrm{t}$ below about $-$0.9 $y_\mathrm{t}^\mathrm{SM}$.

2 data tables

Expected and observed 95% CL upper limits on the tH production cross section times $H \to WW/ZZ/\tau\tau/b\bar{b}/\gamma\gamma$ branching fraction for a scenario of inverted couplings ($\kappa_t=-1.0$ and $\kappa_V=1.0$, top rows), vanishing top quark Yukawa coupling ($\kappa_t=0.0$ and $\kappa_V=1.0$, middle rows), and for an SM-like signal ($\kappa_t=1.0$ and $\kappa_V=1.0$, bottom rows), in pb. The Higgs to vector boson couplings is considered to be SM-like. The expected limit is calculated on a background-only data set, i.e., without tH contribution, but including a coupling dependent contribution from the ttH production. The ttH normalization is kept fixed in the fit, while the tH cross section is allowed to float. Limits can be compared to the expected product of tH cross sections and branching fractions of 0.83, 0.28, and 0.077 pb for the inverted top quark Yukawa coupling, the vanishing top-Yukawa and the SM-like scenario.

Observed and expected 95% CL upper limit on the tH cross section times combined $HH \to WW/ZZ/\tau\tau/b\bar{b}/\gamma\gamma$ branching fraction for different values of the top-Yukawa coupling modifier, assuming SM-like Higgs to vector boson couplings. The expected limit is calculated on a background-only data set, i.e., without tH contribution, but including a coupling dependent contribution from the ttH production. The ttH normalization is kept fixed in the fit, while the tH cross section is allowed to float.


Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 121803, 2019.
Inspire Record 1704939 DOI 10.17182/hepdata.89935

This Letter describes a search for Higgs boson pair production using the combined results from four final states: bb$\gamma\gamma$, bb$\tau\tau$, bbbb, and bbVV, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250-3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.

10 data tables

Expected and observed 95\% \CL exclusion limits on the HH production signal strength for the different channels and their combination.

Expected and observed 95\% \CL exclusion limits on the HH production cross section as a function of the k_lambda parameter.

Expected and observed 95\% \CL exclusion limits on the production of a narrow, spin zero resonance (X) decaying into a pair of Higgs bosons.

More…

Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at $\sqrt{s} =$ 8 and 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 793 (2019) 320-347, 2019.
Inspire Record 1704494 DOI 10.17182/hepdata.91266

The results of a search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV decaying into two photons are presented. The analysis uses the data set collected with the CMS experiment in proton-proton collisions during the 2012 and 2016 LHC running periods. The data sample corresponds to an integrated luminosity of 19.7 (35.9) fb$^{-1}$ at $\sqrt{s} =$8 (13) TeV. The expected and observed 95% confidence level upper limits on the product of the cross section and branching fraction into two photons are presented. The observed upper limit for the 2012 (2016) data set ranges from 129 (161) fb to 31 (26) fb. The statistical combination of the results from the analyses of the two data sets in the common mass range between 80 and 110 GeV yields an upper limit on the product of the cross section and branching fraction, normalized to that for a standard model-like Higgs boson, ranging from 0.7 to 0.2, with two notable exceptions: one in the region around the Z boson peak, where the limit rises to 1.1, which may be due to the presence of Drell-Yan dielectron production where electrons could be misidentified as isolated photons, and a second due to an observed excess with respect to the standard model prediction, which is maximal for a mass hypothesis of 95.3 GeV with a local (global) significance of 2.8 (1.3) standard deviations.

7 data tables

Expected and observed exclusion limits (95% CL, in the asymptotic approximation) on the product of the production cross section and branching fraction into two photons for an additional SM-like Higgs boson, from the analysis of the 13 TeV data. The inner and outer bands indicate the regions containing the distribution of limits located within 1 and 2 $sigma, respectively, of the expectation under the background-only hypothesis. The corresponding theoretical prediction for the product of the cross section and branching fraction into two photons for an additional SM-like Higgs boson is shown as a solid line with a hatched band, indicating its uncertainty

Expected and observed exclusion limits (95% CL, in the asymptotic approximation) on the product of the production cross section and branching fraction into two photons for an additional SM-like Higgs boson, from the analysis of the 8 TeV data. The inner and outer bands indicate the regions containing the distribution of limits located within 1 and 2 $sigma, respectively, of the expectation under the background-only hypothesis. The corresponding theoretical prediction for the product of the cross section and branching fraction into two photons for an additional SM-like Higgs boson is shown as a solid line with a hatched band, indicating its uncertainty

Expected and observed exclusion limits (95% CL, in the asymptotic approximation) on the product of the production cross section and branching fraction into two photons for an additional SM-like Higgs boson, for the ggH plus ttH processes, from the analysis of the 8 TeV data. The inner and outer bands indicate the regions containing the distribution of limits located within $pm 1 and 2 $sigma, respectively, of the expectation under the background-only hypothesis.

More…

Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052005, 2019.
Inspire Record 1704138 DOI 10.17182/hepdata.85748

A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

122 data tables

- - - - - - - - - - - - - - - - - - - - <br/><b>Muon RoI Cluster trigger efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table1">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table2">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table3">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table4">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table5">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table6">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table7">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table8">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table9">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table10">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table11">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table12">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table13">Endcaps </a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table14">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table15">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table16">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table17">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table18">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table19">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table20">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table21">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table22">Endcaps</a> <br/><b>MS vertex efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table23">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table24">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table25">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table26">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table27">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table28">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table29">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table30">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table31">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table32">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table33">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table34">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table35">Endcaps</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table36">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table37">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table38">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table39">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table40">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table41">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table42">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table43">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table44">Endcaps</a> <br/><b>Exclusion limits:</b> <br/><i>mPhi=125, mS=5:</i> <a href="85748?version=1&table=Table45">2Vx</a> <a href="85748?version=1&table=Table46">1Vx</a> <a href="85748?version=1&table=Table47">Combined</a> <br/><i>mPhi=125, mS=8:</i> <a href="85748?version=1&table=Table48">2Vx</a> <a href="85748?version=1&table=Table49">1Vx</a> <a href="85748?version=1&table=Table50">Combined</a> <br/><i>mPhi=125, mS=15:</i> <a href="85748?version=1&table=Table51">2Vx</a> <a href="85748?version=1&table=Table52">1Vx</a> <a href="85748?version=1&table=Table53">Combined</a> <br/><i>mPhi=125, mS=25:</i> <a href="85748?version=1&table=Table54">2Vx</a> <a href="85748?version=1&table=Table55">1Vx</a> <a href="85748?version=1&table=Table56">Combined</a> <br/><i>mPhi=125, mS=40:</i> <a href="85748?version=1&table=Table57">2Vx</a> <a href="85748?version=1&table=Table58">1Vx</a> <a href="85748?version=1&table=Table59">Combined</a> <br/><i>Stealth SUSY mG=250:</i> <a href="85748?version=1&table=Table60">2Vx</a> <br/><i>Stealth SUSY mG=500:</i> <a href="85748?version=1&table=Table61">2Vx</a> <a href="85748?version=1&table=Table62">1Vx</a> <a href="85748?version=1&table=Table63">Combined</a> <br/><i>Stealth SUSY mG=800:</i> <a href="85748?version=1&table=Table64">2Vx</a> <a href="85748?version=1&table=Table65">1Vx</a> <a href="85748?version=1&table=Table66">Combined</a> <br/><i>Stealth SUSY mG=1200:</i> <a href="85748?version=1&table=Table67">2Vx</a> <a href="85748?version=1&table=Table68">1Vx</a> <a href="85748?version=1&table=Table69">Combined</a> <br/><i>Stealth SUSY mG=1500:</i> <a href="85748?version=1&table=Table70">2Vx</a> <a href="85748?version=1&table=Table71">1Vx</a> <a href="85748?version=1&table=Table72">Combined</a> <br/><i>Stealth SUSY mG=2000:</i> <a href="85748?version=1&table=Table73">2Vx</a> <a href="85748?version=1&table=Table74">1Vx</a> <a href="85748?version=1&table=Table75">Combined</a> <br/><i>mPhi=100, mS=8:</i> <a href="85748?version=1&table=Table76">2Vx</a> <br/><i>mPhi=100, mS=25:</i> <a href="85748?version=1&table=Table77">2Vx</a> <br/><i>mPhi=200, mS=8:</i> <a href="85748?version=1&table=Table78">2Vx</a> <br/><i>mPhi=200, mS=25:</i> <a href="85748?version=1&table=Table79">2Vx</a> <br/><i>mPhi=200, mS=50:</i> <a href="85748?version=1&table=Table80">2Vx</a> <br/><i>mPhi=400, mS=50:</i> <a href="85748?version=1&table=Table81">2Vx</a> <br/><i>mPhi=400, mS=100:</i> <a href="85748?version=1&table=Table82">2Vx</a> <br/><i>mPhi=600, mS=50:</i> <a href="85748?version=1&table=Table83">2Vx</a> <br/><i>mPhi=600, mS=150:</i> <a href="85748?version=1&table=Table84">2Vx</a> <br/><i>mPhi=1000, mS=50:</i> <a href="85748?version=1&table=Table85">2Vx</a> <br/><i>mPhi=1000, mS=150:</i> <a href="85748?version=1&table=Table86">2Vx</a> <br/><i>mPhi=1000, mS=400:</i> <a href="85748?version=1&table=Table87">2Vx</a> <br/><i>Baryogenesis nubb, mChi=10</i> <a href="85748?version=1&table=Table88">2Vx</a> <a href="85748?version=1&table=Table89">1Vx</a> <a href="85748?version=1&table=Table90">Combined</a> <br/><i>Baryogenesis nubb, mChi=30</i> <a href="85748?version=1&table=Table91">2Vx</a> <a href="85748?version=1&table=Table92">1Vx</a> <a href="85748?version=1&table=Table93">Combined</a> <br/><i>Baryogenesis nubb, mChi=50</i> <a href="85748?version=1&table=Table94">2Vx</a> <a href="85748?version=1&table=Table95">1Vx</a> <a href="85748?version=1&table=Table96">Combined</a> <br/><i>Baryogenesis nubb, mChi=100</i> <a href="85748?version=1&table=Table97">2Vx</a> <br/><i>Baryogenesis cbs, mChi=10</i> <a href="85748?version=1&table=Table98">2Vx</a> <a href="85748?version=1&table=Table99">1Vx</a> <a href="85748?version=1&table=Table100">Combined</a> <br/><i>Baryogenesis cbs, mChi=30</i> <a href="85748?version=1&table=Table101">2Vx</a> <a href="85748?version=1&table=Table102">1Vx</a> <a href="85748?version=1&table=Table103">Combined</a> <br/><i>Baryogenesis cbs, mChi=50</i> <a href="85748?version=1&table=Table104">2Vx</a> <a href="85748?version=1&table=Table105">1Vx</a> <a href="85748?version=1&table=Table106">Combined</a> <br/><i>Baryogenesis cbs, mChi=100</i> <a href="85748?version=1&table=Table107">2Vx</a> <br/><i>Baryogenesis lcb, mChi=10</i> <a href="85748?version=1&table=Table108">2Vx</a> <a href="85748?version=1&table=Table109">1Vx</a> <a href="85748?version=1&table=Table110">Combined</a> <br/><i>Baryogenesis lcb, mChi=30</i> <a href="85748?version=1&table=Table111">2Vx</a> <a href="85748?version=1&table=Table112">1Vx</a> <a href="85748?version=1&table=Table113">Combined</a> <br/><i>Baryogenesis lcb, mChi=50</i> <a href="85748?version=1&table=Table114">2Vx</a> <a href="85748?version=1&table=Table115">1Vx</a> <a href="85748?version=1&table=Table116">Combined</a> <br/><i>Baryogenesis lcb, mChi=100</i> <a href="85748?version=1&table=Table117">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=10</i> <a href="85748?version=1&table=Table118">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=30</i> <a href="85748?version=1&table=Table119">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=50</i> <a href="85748?version=1&table=Table120">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=100</i> <a href="85748?version=1&table=Table121">2Vx</a>

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=100$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=125$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

More…

Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s} =$ 13 TeV using events containing two leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2019) 149, 2019.
Inspire Record 1703993 DOI 10.17182/hepdata.89307

Measurements of differential top quark pair $\mathrm{t\overline{t}}$ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $\mathrm{t\overline{t}}$ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $\mathrm{t\overline{t}}$ and leptonic charge asymmetries.

188 data tables

Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$.

More…

Experimental study of the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions at the Mainz Microtron

The A2 collaboration Akondi, C.S. ; Bantawa, K. ; Manley, D.M. ; et al.
Eur.Phys.J.A 55 (2019) 202, 2019.
Inspire Record 1703675 DOI 10.17182/hepdata.130236

This work measured $d\sigma/d\Omega$ for neutral kaon photoproduction reactions from threshold up to a c.m.\ energy of 1855MeV, focussing specifically on the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions. Our results for $\gamma n\rightarrow K^0 \Sigma^0$ are the first-ever measurements for that reaction. These data will provide insight into the properties of $N^*$ resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $\pi N$ channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.

28 data tables

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

More…

Search for new particles decaying to a jet and an emerging jet

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2019) 179, 2019.
Inspire Record 1700173 DOI 10.17182/hepdata.88380

A search is performed for events consistent with the pair production of a new heavy particle that acts as a mediator between a dark sector and normal matter, and that decays to a light quark and a new fermion called a dark quark. The search is based on data corresponding to an integrated luminosity of 16.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC in 2016. The dark quark is charged only under a new quantum-chromodynamics-like force, and forms an "emerging jet" via a parton shower, containing long-lived dark hadrons that give rise to displaced vertices when decaying to standard model hadrons. The data are consistent with the expectation from standard model processes. Limits are set at 95% confidence level excluding dark pion decay lengths between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV. Decay lengths smaller than 5 mm and greater than 225 mm are also excluded in the lower part of this mass range. The dependence of the limit on the dark pion mass is weak for masses between 1 and 10 GeV. This analysis is the first dedicated search for the pair production of a new particle that decays to a jet and an emerging jet.

10 data tables

Distributions of $\langle IP_{\mathrm{2D}}\rangle$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion proper decay length of 25 mm, for various dark pion masses.

Distributions of $\alpha_\mathrm{3D}$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion mass of 5 GeV for dark pion proper decay lengths ranging from 1 to 300 mm.

The signal acceptance A, defined as the fraction of simulated signal events passing the selection criteria, for models with a dark pion mass $m_{\pi_\mathrm{DK}}$ of 5 GeV as a function of the mediator mass $m_{\mathrm{X_{DK}}}$ and the dark pion proper decay length $c\tau_{\pi_\mathrm{DK}}$. The corresponding selection set number for each model is indicated as text on the plot.

More…

Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of $Z$ bosons in association with a high-energy photon ($Z\gamma$ production) is studied in the neutrino decay channel of the $Z$ boson using $pp$ collisions at $\sqrt{s}$ = 13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate $Z\gamma$ events with invisible decays of the $Z$ boson are selected by requiring significant transverse momentum ($p_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy ($E_{T}$). The rate of $Z\gamma$ production is measured as a function of photon $E_{T}$, dineutrino system $p_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in $Z\gamma$ production with photon $E_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

8 data tables

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 13$ TeV in the extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the inclusive $N_{jets} \geq 0$ extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the exclusive $N_{jets} = 0$ extended fiducial region defined in the paper.

More…

Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 797 (2019) 134826, 2019.
Inspire Record 1697838 DOI 10.17182/hepdata.95242

Evidence for the light-by-light scattering process, $\gamma\gamma$ $\to$ $\gamma\gamma$, in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is reported. The analysis is conducted using a data sample corresponding to an integrated luminosity of 390 $\mu$b$^{-1}$ recorded by the CMS experiment at the LHC. Light-by-light scattering processes are selected in events with two photons exclusively produced, each with transverse energy E$_\mathrm{T}^{\gamma}$ $>$ 2 GeV, pseudorapidity $|\eta^{\gamma}|$ $\lt$ 2.4, diphoton invariant mass $m^{\gamma\gamma}$ $\gt$ 5 GeV, diphoton transverse momentum $p_\mathrm{T}^{\gamma\gamma}$ $\lt$ 1 GeV, and diphoton acoplanarity below 0.01. After all selection criteria are applied, 14 events are observed, compared to expectations of 9.0 $\pm$ 0.9 (theo) events for the signal and 4.0 $\pm$ 1.2 (stat) for the background processes. The excess observed in data relative to the background-only expectation corresponds to a significance of 3.7 standard deviations, and has properties consistent with those expected for the light-by-light scattering signal. The measured fiducial light-by-light scattering cross section, $\sigma_\mathrm{fid} (\gamma\gamma$ $\to$ $\gamma\gamma) =$ 120 $\pm$ 46 (stat) $\pm$ 28 (syst) $\pm$ 12 (theo) nb, is consistent with the standard model prediction. The $m^{\gamma\gamma}$ distribution is used to set new exclusion limits on the production of pseudoscalar axion-like particles, via the $\gamma\gamma$ $\to$ a $\to$ $\gamma\gamma$ process, in the mass range $m_{\mathrm{a}} =$ 5-90 GeV.

8 data tables

Detector-level diphoton acoplanarity distribution

Detector-level photon E$_{T}$ distribution

Detector-level photon $\eta$ distribution

More…