The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .
No description provided.
We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 < q 2 < 0.122 (GeV/ c ) 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of 〈r 2 〈 1 2 = 0.657 ± 0.012 fm.
Errors are statistical only.
Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2<0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4<Q^2<80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.
Differential cross section for DIS events as a function of Z_Pomeron.
Differential cross section for DIS events as a function of LOG10(X_Pomeron).
Differential cross section for DIS events as a function of W.
We are reporting on a new determination of sin 2 ϑ w from the ratio of v μ e to v e scattering cross sections. A new detector designed for this purpose was exposed tothe Wide Band Neutrino Beamof the 450 GeV (CERN SPS. An analysis of data taken in 1987 and 1988 is presented based on 762 v μ e and 1017 v e events. From the ratio of σ( v μ e ) to σ( v μ e ) we determined sin 2 ϑ w =0.233±0.012 ( stat ) ± 0.008 ( syst ) without radiative correction. With radiative correction for m t = m H =100 GeV we find sin 2 ϑ w =0.232±0.012( stat )±0.008( syst ).
Data without electroweak radiative corrections.
Data corrected for electroweak radiative effects with TOP and HIGGS masses 100 GeV.
Diffractive dissociation of virtual photons, gamma* p-->Xp, has been studied in ep interactions with the ZEUS detector at HERA using an integrated luminosity of approx. 10 pb^-1. The data cover photon virtualities 0.17 < Q^2< 0.70 GeV^2 and 3 < Q^2< 80 GeV^2 with 3<M_X<38 GeV, where M_X is the mass of the hadronic final state.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 0.17 to 0.70 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 3 to 9 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 9 to 80 GeV**2.
A study of the reaction π + p → p π + π o at 16 GeV/ c incident momentum has been made using the prism plot analysis to reject background events arising from elastic and multineutral contaminations and to separate different reaction channels ( ϱ + p, g + p, Δ + π + , Δ ++ π o , π + (p π o ) DD ). Cross sections, invariant mass distributions and production and decay angular distributions are presented. For the channel corresponding to proton diffraction dissociation strong violation of both s - and t -channel helicity conservation is found for low values of the (p π o ) mass. We demonstrate that the prism plot method provides a better separation of background events than conventional methods using kinematic cuts.
STATISTICAL ERRORS ONLY.
A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the complete ('all') data sample taken in 1997.
The spin rotation parameter R has been measured for elastic π − p scattering at 40 GeV/ c , at four momentum transfers t ranging from −0.19 to −0.52 (GeV/ c ) 2 . The average value within this interval is R π − p = -0.200± 0.023. The resulting constraints on the πN scattering amplitudes are discussed. The experiments also yields an average value for K − p scattering, R K − p scattering, R K − p = -0.16±0.16.
.
.
The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy sqrt(s) = 8 TeV based on a high-statistics data sample obtained with the beta* = 90 optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2 GeV^2 with a significance greater than 7 sigma. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb, respectively, in agreement with previous TOTEM measurements.
The elastic differential cross-section as determined in this analysis using the ''optimised'' binning.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).